• Title/Summary/Keyword: peak signal-to-noise ratio

Search Result 492, Processing Time 0.028 seconds

Copyright Protection for Fire Video Images using an Effective Watermarking Method (효과적인 워터마킹 기법을 사용한 화재 비디오 영상의 저작권 보호)

  • Nguyen, Truc;Kim, Jong-Myon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.8
    • /
    • pp.579-588
    • /
    • 2013
  • This paper proposes an effective watermarking approach for copyright protection of fire video images. The proposed watermarking approach efficiently utilizes the inherent characteristics of fire data with respect to color and texture by using a gray level co-occurrence matrix (GLCM) and fuzzy c-means (FCM) clustering. GLCM is used to generate a texture feature dataset by computing energy and homogeneity properties for each candidate fire image block. FCM is used to segment color of the fire image and to select fire texture blocks for embedding watermarks. Each selected block is then decomposed into a one-level wavelet structure with four subbands [LL, LH, HL, HH] using a discrete wavelet transform (DWT), and LH subband coefficients with a gain factor are selected for embedding watermark, where the visibility of the image does not affect. Experimental results show that the proposed watermarking approach achieves about 48 dB of high peak-signal-to-noise ratio (PSNR) and 1.6 to 2.0 of low M-singular value decomposition (M-SVD) values. In addition, the proposed approach outperforms conventional image watermarking approach in terms of normalized correlation (NC) values against several image processing attacks including noise addition, filtering, cropping, and JPEG compression.

Hybrid Watermarking Technique using DWT Subband Structure and Spatial Edge Information (DWT 부대역구조와 공간 윤곽선정보를 이용한 하이브리드 워터마킹 기술)

  • 서영호;김동욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.706-715
    • /
    • 2004
  • In this paper, to decide the watermark embedding positions and embed the watermark we use the subband tee structure which is presented in the wavelet domain and the edge information in the spatial domain. The significant frequency region is estimated by the subband searching from the higher frequency subband to the lower frequency subband. LH1 subband which has the higher frequency in tree structure of the wavelet domain is divided into 4${\times}$4 submatrices, and the threshold which is used in the watermark embedding is obtained by the blockmatrix which is consists by the average of 4${\times}$4 submatrices. Also the watermark embedding position, Keymap is generated by the blockmatrix for the energy distribution in the frequency domain and the edge information in the spatial domain. The watermark is embedded into the wavelet coefficients using the Keymap and the random sequence generated by LFSR(Linear feedback shift register). Finally after the inverse wavelet transform the watermark embedded image is obtained. the proposed watermarking algorithm showed PSNR over 2㏈ and had the higher results from 2% to 8% in the comparison with the previous research for the attack such as the JPEG compression and the general image processing just like blurring, sharpening and gaussian noise.

Optimal HPLC Condition for Simultaneous Determination of Anthocyanins in Black Soybean Seed Coats (검정콩 함유 안토시아닌의 동시분석을 위한 최적 HPLC 분석 조건)

  • Choung, Myoung-Gun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.4
    • /
    • pp.359-368
    • /
    • 2008
  • Black soybean has been widely utilized as foods and oriental medicinal materials. The pigmentation in the seed coat of black soybean is due to accumulate anthocyanins in the epidermis palisade layer. The anthocyanins of black soybean seed coat are considered as a parameter of quality evaluation of black soybean. Therefore, the purpose of this study was to investigate the most suitable HPLC condition for simultaneous determination of anthocyanins in black soybean seed coats extracts. The efficient HPLC analytical condition of D3G, C3G, and Pt3G contained extracts of black soybean seed coats was developed. The gradient elution employed a $250\;mm\;{\times}\;4.6\;mm$ i.d. YMC-pak ODS-AM 303 column. The gradient system was used two mobile phases. A gradient elution was performed with mobile phase A, consisting of 5% aqueous formic acid, and mobile phase B, comprising 5% formic acid - acetonitrile, and delivered at a flow rate of 0.7 mL/min as follows: $0{\sim}35\;min$, $90%\;A{\sim}60%\;A$; 36 min, 90% A; 46 min, 90% A. The UV-VIS. detection wavelength was set at 520 nm. The limit of detection (LOD) for D3G, C3G, and Pt3G were under 10 ng/mL.

Comparison of Image Quality among Different Computed Tomography Algorithms for Metal Artifact Reduction (금속 인공물 감소를 위한 CT 알고리즘 적용에 따른 영상 화질 비교)

  • Gui-Chul Lee;Young-Joon Park;Joo-Wan Hong
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.541-549
    • /
    • 2023
  • The aim of this study wasto conduct a quantitative analysis of CT image quality according to an algorithm designed to reduce metal artifacts induced by metal components. Ten baseline images were obtained with the standard filtered back-projection algorithm using spectral detector-based CT and CT ACR 464 phantom, and ten images were also obtained on the identical phantom with the standard filtered back-projection algorithm after inducing metal artifacts. After applying the to raw data from images with metal artifacts, ten additional images for each were obtained by applying the virtual monoenergetic algorithm. Regions of interest were set for polyethylene, bone, acrylic, air, and water located in the CT ACR 464 phantom module 1 to conduct compare the Hounsfield units for each algorithm. The algorithms were individually analyzed using root mean square error, mean absolute error, signal-to-noise ratio, peak signal-to-noise ratio, and structural similarity index to assess the overall image quality. When the Hounsfield units of each algorithm were compared, a significant difference was found between the images with different algorithms (p < .05), and large changes were observed in images using the virtual monoenergetic algorithm in all regions of interest except acrylic. Image quality analysis indices revealed that images with the metal artifact reduction algorithm had the highest resolution, but the structural similarity index was highest for images with the metal artifact reduction algorithm followed by an additional virtual monoenergetic algorithm. In terms of CT images, the metal artifact reduction algorithm was shown to be more effective than the monoenergetic algorithm at reducing metal artifacts, but to obtain quality CT images, it will be important to ascertain the advantages and differences in image qualities of the algorithms, and to apply them effectively.

Image Watermarking for Copyright Protection of Images on Shopping Mall (쇼핑몰 이미지 저작권보호를 위한 영상 워터마킹)

  • Bae, Kyoung-Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.147-157
    • /
    • 2013
  • With the advent of the digital environment that can be accessed anytime, anywhere with the introduction of high-speed network, the free distribution and use of digital content were made possible. Ironically this environment is raising a variety of copyright infringement, and product images used in the online shopping mall are pirated frequently. There are many controversial issues whether shopping mall images are creative works or not. According to Supreme Court's decision in 2001, to ad pictures taken with ham products is simply a clone of the appearance of objects to deliver nothing but the decision was not only creative expression. But for the photographer's losses recognized in the advertising photo shoot takes the typical cost was estimated damages. According to Seoul District Court precedents in 2003, if there are the photographer's personality and creativity in the selection of the subject, the composition of the set, the direction and amount of light control, set the angle of the camera, shutter speed, shutter chance, other shooting methods for capturing, developing and printing process, the works should be protected by copyright law by the Court's sentence. In order to receive copyright protection of the shopping mall images by the law, it is simply not to convey the status of the product, the photographer's personality and creativity can be recognized that it requires effort. Accordingly, the cost of making the mall image increases, and the necessity for copyright protection becomes higher. The product images of the online shopping mall have a very unique configuration unlike the general pictures such as portraits and landscape photos and, therefore, the general image watermarking technique can not satisfy the requirements of the image watermarking. Because background of product images commonly used in shopping malls is white or black, or gray scale (gradient) color, it is difficult to utilize the space to embed a watermark and the area is very sensitive even a slight change. In this paper, the characteristics of images used in shopping malls are analyzed and a watermarking technology which is suitable to the shopping mall images is proposed. The proposed image watermarking technology divide a product image into smaller blocks, and the corresponding blocks are transformed by DCT (Discrete Cosine Transform), and then the watermark information was inserted into images using quantization of DCT coefficients. Because uniform treatment of the DCT coefficients for quantization cause visual blocking artifacts, the proposed algorithm used weighted mask which quantizes finely the coefficients located block boundaries and coarsely the coefficients located center area of the block. This mask improves subjective visual quality as well as the objective quality of the images. In addition, in order to improve the safety of the algorithm, the blocks which is embedded the watermark are randomly selected and the turbo code is used to reduce the BER when extracting the watermark. The PSNR(Peak Signal to Noise Ratio) of the shopping mall image watermarked by the proposed algorithm is 40.7~48.5[dB] and BER(Bit Error Rate) after JPEG with QF = 70 is 0. This means the watermarked image is high quality and the algorithm is robust to JPEG compression that is used generally at the online shopping malls. Also, for 40% change in size and 40 degrees of rotation, the BER is 0. In general, the shopping malls are used compressed images with QF which is higher than 90. Because the pirated image is used to replicate from original image, the proposed algorithm can identify the copyright infringement in the most cases. As shown the experimental results, the proposed algorithm is suitable to the shopping mall images with simple background. However, the future study should be carried out to enhance the robustness of the proposed algorithm because the robustness loss is occurred after mask process.

Spine Computed Tomography to Magnetic Resonance Image Synthesis Using Generative Adversarial Networks : A Preliminary Study

  • Lee, Jung Hwan;Han, In Ho;Kim, Dong Hwan;Yu, Seunghan;Lee, In Sook;Song, You Seon;Joo, Seongsu;Jin, Cheng-Bin;Kim, Hakil
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.3
    • /
    • pp.386-396
    • /
    • 2020
  • Objective : To generate synthetic spine magnetic resonance (MR) images from spine computed tomography (CT) using generative adversarial networks (GANs), as well as to determine the similarities between synthesized and real MR images. Methods : GANs were trained to transform spine CT image slices into spine magnetic resonance T2 weighted (MRT2) axial image slices by combining adversarial loss and voxel-wise loss. Experiments were performed using 280 pairs of lumbar spine CT scans and MRT2 images. The MRT2 images were then synthesized from 15 other spine CT scans. To evaluate whether the synthetic MR images were realistic, two radiologists, two spine surgeons, and two residents blindly classified the real and synthetic MRT2 images. Two experienced radiologists then evaluated the similarities between subdivisions of the real and synthetic MRT2 images. Quantitative analysis of the synthetic MRT2 images was performed using the mean absolute error (MAE) and peak signal-to-noise ratio (PSNR). Results : The mean overall similarity of the synthetic MRT2 images evaluated by radiologists was 80.2%. In the blind classification of the real MRT2 images, the failure rate ranged from 0% to 40%. The MAE value of each image ranged from 13.75 to 34.24 pixels (mean, 21.19 pixels), and the PSNR of each image ranged from 61.96 to 68.16 dB (mean, 64.92 dB). Conclusion : This was the first study to apply GANs to synthesize spine MR images from CT images. Despite the small dataset of 280 pairs, the synthetic MR images were relatively well implemented. Synthesis of medical images using GANs is a new paradigm of artificial intelligence application in medical imaging. We expect that synthesis of MR images from spine CT images using GANs will improve the diagnostic usefulness of CT. To better inform the clinical applications of this technique, further studies are needed involving a large dataset, a variety of pathologies, and other MR sequence of the lumbar spine.

An Improved Fast Fractal Image Decoding by recomposition of the Decoding Order (복원순서 재구성에 의한 개선된 고속 프랙탈 영상복원)

  • Jeong, Tae-Il;Moon, Kwang-Seok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.5
    • /
    • pp.84-93
    • /
    • 2000
  • The conventional fractal decoding was implemented to IFS(iterated function system) for every range regions But a part of the range regions can be decoded without the iteration and there is a data dependence regions In order to decode $R{\times}R$ range blocks, It needs $2R{\times}2R$ domain blocks This decoding can be analyzed to the dependence graph The vertex of the graph represents the range blocks, and the vertex is classified into the vertex of the range and domain The edge indicates that the vertex is referred to the other vertices The in-degree and the out-degree are defined to the number of the edge that is entered and exited, respectively The proposed method is analyzed by a dependence graph to the fractal code, and the decoding order is recomposed by the information of the out-degree That is, If the out-degree of the vertex is zero, then this vertex can be used to the vertex with data dependence Thus, the proposed method can extend the data dependence regions by the recomposition of the decoding order As a result, the Iterated regions are minimized without loss of the image quality or PSNR(peak signal-to-noise ratio), Therefore, it can be a fast decoding by the reducing to the computational complexity for IFS in the fractal Image decoding.

  • PDF

Image Quality Evaluation in Computed Tomography Using Super-resolution Convolutional Neural Network (Super-resolution Convolutional Neural Network를 이용한 전산화단층상의 화질 평가)

  • Nam, Kibok;Cho, Jeonghyo;Lee, Seungwan;Kim, Burnyoung;Yim, Dobin;Lee, Dahye
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.211-220
    • /
    • 2020
  • High-quality computed tomography (CT) images enable precise lesion detection and accurate diagnosis. A lot of studies have been performed to improve CT image quality while reducing radiation dose. Recently, deep learning-based techniques for improving CT image quality have been developed and show superior performance compared to conventional techniques. In this study, a super-resolution convolutional neural network (SRCNN) model was used to improve the spatial resolution of CT images, and image quality according to the hyperparameters, which determine the performance of the SRCNN model, was evaluated in order to verify the effect of hyperparameters on the SRCNN model. Profile, structural similarity (SSIM), peak signal-to-noise ratio (PSNR), and full-width at half-maximum (FWHM) were measured to evaluate the performance of the SRCNN model. The results showed that the performance of the SRCNN model was improved with an increase of the numbers of epochs and training sets, and the learning rate needed to be optimized for obtaining acceptable image quality. Therefore, the SRCNN model with optimal hyperparameters is able to improve CT image quality.

Enhancing CT Image Quality Using Conditional Generative Adversarial Networks for Applying Post-mortem Computed Tomography in Forensic Pathology: A Phantom Study (사후전산화단층촬영의 법의병리학 분야 활용을 위한 조건부 적대적 생성 신경망을 이용한 CT 영상의 해상도 개선: 팬텀 연구)

  • Yebin Yoon;Jinhaeng Heo;Yeji Kim;Hyejin Jo;Yongsu Yoon
    • Journal of radiological science and technology
    • /
    • v.46 no.4
    • /
    • pp.315-323
    • /
    • 2023
  • Post-mortem computed tomography (PMCT) is commonly employed in the field of forensic pathology. PMCT was mainly performed using a whole-body scan with a wide field of view (FOV), which lead to a decrease in spatial resolution due to the increased pixel size. This study aims to evaluate the potential for developing a super-resolution model based on conditional generative adversarial networks (CGAN) to enhance the image quality of CT. 1761 low-resolution images were obtained using a whole-body scan with a wide FOV of the head phantom, and 341 high-resolution images were obtained using the appropriate FOV for the head phantom. Of the 150 paired images in the total dataset, which were divided into training set (96 paired images) and validation set (54 paired images). Data augmentation was perform to improve the effectiveness of training by implementing rotations and flips. To evaluate the performance of the proposed model, we used the Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM) and Deep Image Structure and Texture Similarity (DISTS). Obtained the PSNR, SSIM, and DISTS values of the entire image and the Medial orbital wall, the zygomatic arch, and the temporal bone, where fractures often occur during head trauma. The proposed method demonstrated improvements in values of PSNR by 13.14%, SSIM by 13.10% and DISTS by 45.45% when compared to low-resolution images. The image quality of the three areas where fractures commonly occur during head trauma has also improved compared to low-resolution images.

Convergence Performance Evaluation of Radiation Protection for Apron using the PSNR (최대 신호 대 잡음비를 이용한 방사선 방어용 앞치마의 융복합 성능평가)

  • Kim, Dae-Ho;Kim, Sang-Hyun
    • Journal of Digital Convergence
    • /
    • v.13 no.10
    • /
    • pp.377-383
    • /
    • 2015
  • This study evaluates the convergence radiation protection performance by measuring the PSNR(peak signal-to-noise ratio) values of the image J in the image evaluation program based on increased relative to this exposure of radiation workers.The aim of this study was to evaluate radiation protection performance of apron for design of it's basic information. Method was used to PSNR of Image J program and good condition apron was more than 27dB, the PSNR value of poor condition apron appeared to be less than 24dB. The result is the normality were satisfied distribution and T-test values were statistically significant with p<0.001. Results of evaluation of the performance protective apron through the more easily accessible experimental conditions and methods in the clinical was confirmed distinctly different. in order to reduce the radiation exposure we need to evaluate convergence protection performance and to be having a good performance apron.