• Title/Summary/Keyword: peak set

Search Result 590, Processing Time 0.031 seconds

Implications of bi-directional interaction on seismic fragilities of structures

  • Pramanik, Debdulal;Banerjee, Abhik Kumar;Roy, Rana
    • Coupled systems mechanics
    • /
    • v.5 no.2
    • /
    • pp.101-126
    • /
    • 2016
  • Seismic structural fragility constitutes an important step for performance based seismic design. Lateral load-resisting structural members are often analyzed under one component base excitation, while the effect of bi-directional shaking is accounted per simplified rules. Fragility curves are constructed herein under real bi-directional excitation by a simple extension of the conventional Incremental Dynamic Analysis (IDA) under uni-directional shaking. Simple SODF systems, parametrically adjusted to different periods, are examined under a set of near-fault and far-fault excitations. Consideration of bi-directional interaction appears important for stiff systems. Further, the study indicates that the peak ground accelertaion, velocity and displacement (PGA, PGV and PGD) of accelerogram are relatively stable and efficient intensity measures for short, medium and long period systems respectively. '30%' combination rule seems to reasonably predict the fragility under bi-directional shaking at least for first mode dominated systems dealt herein up to a limit state of damage control.

Rheological Characteristics of Flour Batters in the Presence of Mugwort Powder (쑥 분말을 첨가한 소맥분의 리올로지 특성에 관한 연구)

  • Lee, Hyun-Ja;Park, Sang-Hae;Kang, Kun-Og
    • The Korean Journal of Community Living Science
    • /
    • v.20 no.2
    • /
    • pp.231-237
    • /
    • 2009
  • This study was conducted to investigate the effects of mugwort powder on two types of flour batters, i.e., medium and cake, using the Falling Number test, RVA test, alveogram, and farimogram. The mugwort powder was added at 3% and 5% on the medium and cake flour bases, respectively. The Falling Numbers of the medium and cake flour batters with mugwort powder were increased due to the alteration of the protein in the flour. Analysis of the RVA characteristics showed that the addition of mugwort powder did not have significant effects on the initial pasting temperature. Peak viscosity, holding strength, final viscosity, and set back values of the medium flour batter were not consistent, but those of the cake flour batter were decreased. The characteristics of the alveogram showed that the addition of mugwort powder increased the extensibility and the swelling index. Farinogram demonstrated that the addition of mugwort powder decreased the water absorption and improved the stability of the medium and cake flour batters.

  • PDF

An Investigation of the Effect of Changes in Engine Operating Conditions on Ignition in an HCCI Engine

  • Lee, Kyung-Hwan;Gopalakrishnan, Venkatesh;Abraham, John
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1809-1818
    • /
    • 2004
  • The dependence of the ignition timing in an HCCI engine on intake temperature and pressure, equivalence ratio, and fuel species is investigated with a zero-dimensional model combined with a detailed chemical kinetics. The accuracy of the model is evaluated by comparing measured and computed results in a propane-fueled HCCI engine. It is shown that the peak pressure values are reproduced within 10% and ignition timing within 5$^{\circ}$ CA. The heat loss through the walls is found to affect significantly on the ignition timing for different inlet conditions. It is also shown that for the propane-fueled engine, the tolerance in intake temperatures is 20-25K and the tolerance in intake pressure is about 1 bar for stable operation without misfire or too early ignition. Comparison of propane and heptane fuels indicates that the tendency to misfire when heptane is employed as the fuel is less than that when propane is employed with the same wall temperature conditions. However, the heptane-fueled engine may have a lower compression ratio to avoid too early ignition and hence lower efficiency. For the selected set of engine parameters, stable operations might be achieved for the heptane-fueled engine with twice as much tolerance in intake temperatures as for the propane-fueled engine.

Effective Vibration Control of Existing Footbridge Using Tuned Mass Damper (TMD를 이용한 기존 보도교의 효율적 진동제어)

  • 최석정;유문식;안상구;박찬희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.263-269
    • /
    • 2003
  • This paper describes the vibration control using a tuned mass damper(TMD) for the existing footbridge. The footbridge connecting driveway to the Stadium is the simple steel box-girder bridge with the main span length of 44.6m. This footbridge has light weight(=25.3kN/m) and pedestrians walking on the footbridge were found to induce resonance at the fundamental mode of the structure, resulting in unacceptable accelerations in it. Taking into account economical and constructional benefits, TMD was designed to damp the vibrations of the modes next to the natural frequency caused by a pedestrian, with a limitation criteria of vertical amplitude. A set of two 500kgf vertical TMDs was manufactured by KR and installed into the railings next to the central section of this footbridge. The installation of TMDs reduced the peak acceleration in the meeting box to less than 90%. It is hoped that the study will present bridge engineers with a measure of retrofitting footbridges to make them more friendly to users.

  • PDF

A Study on Optimum Cam Profile Extraction Considering Dynamic Characteristics of a Cam-Valve System (밸브 기구의 동특성을 고려한 캠 형상 설계에 관한 연구)

  • 박경조;전혁수;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.29-39
    • /
    • 1989
  • In this work, a numerical and experimental study was done to get an optimum cam profile considering dynamic characteristics of a cam-valve system. First of all, a four degree of freedom dynamic model was set up for an OHV type cam-valve acceleration while not modifying original cam shape greatly. Also another optimization which aims to enlarge the valve displacement area while reducing the peak valve acceleration, was tried. The optimized cam profile was tested experimentally and found that the measured valve displacement and pushrod force show only very small error from the analytically predicted model simulation results.

Effect of force during stumbling of the femur fracture with a different ce-mented total hip prosthesis

  • El Sallah, Zagane Mohammed;Ali, Benouis;Abderahmen, Sahli
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.5 no.1
    • /
    • pp.11-23
    • /
    • 2020
  • Total hip prosthesis is used for the patients who have hip fracture and are unable to recover naturally. To de-sign highly durable prostheses one has to take into account the natural processes occurring in the bone. Finite element analysis is a computer based numerical analysis method which can be used to calculate the response of a model to a set of well-defined boundary conditions. In this paper, the static load analysis is based, by se-lecting the peak load during the stumbling activity. Two different implant materials have been selected to study appropriate material. The results showed the difference of maximum von Misses stress and detected the frac-ture of the femur shaft for different model (Charnley and Osteal) implant with the extended finite element method (XFEM), and after the results of the numerical simulation of XFEM for different was used in deter-mining the stress intensity factors (SIF) to identify the crack behavior implant materials for different crack length. It has been shown that the maximum stress intensity factors were observed in the model of Charnley.

Pin Power Distribution Determined by Analyzing the Rotational Gamma Scanning Data of HANARO Fuel Bundle

  • Lee, Jae-Yun;Park, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.452-461
    • /
    • 1998
  • The pin power distribution is determined by analyzing the rotational gamma scanning data for 36 element fuel bundle of HANARO. A fission monitor of Nb$^{95}$ is chosen by considering the criteria of the half-life, fission yield, emitting ${\gamma}$-ray energy and probability. The ${\gamma}$-ray spectra were measured in Korea Atomic Energy Research Institute(KAERI) by using a HPGe detector and by rotating the fuel bundle at steps of 10$^{\circ}$. The counting rates of Nb$^{95}$ 766 keV ${\gamma}$-rays are determined by analyzing the full absorption peak in the spectra. A 36$\times$36 response matrix is obtained from calculating the contribution of each rod at every scanning angle by assuming 2-dimensional and parallel beam approximations for the measuring geometry. In terms of the measured counting rates and the calculated response matrix, an inverse problem is set up for the unknown distribution of activity concentrations of pins. To select a suitable solving method, the performances of three direct methods and the iterative least-square method are tested by solving simulation examples. The final solution is obtained by using the iterative least-square method that shows a good stability. The influences of detection error, step size of rotation and the collimator width are discussed on the accuracy of the numerical solution. Hence an improvement in the accuracy of the solution is proposed by reducing the collimator width of the scanning arrangement.

  • PDF

MODELING OF NONLINEAR CYCLIC LOAD BEHAVIOR OF I-SHAPED COMPOSITE STEEL-CONCRETE SHEAR WALLS OF NUCLEAR POWER PLANTS

  • Ali, Ahmer;Kim, Dookie;Cho, Sung Gook
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.89-98
    • /
    • 2013
  • In recent years steel-concrete composite shear walls have been widely used in enormous high-rise buildings. Due to high strength and ductility, enhanced stiffness, stable cycle characteristics and large energy absorption, such walls can be adopted in the auxiliary building; surrounding the reactor containment structure of nuclear power plants to resist lateral forces induced by heavy winds and severe earthquakes. This paper demonstrates a set of nonlinear numerical studies on I-shaped composite steel-concrete shear walls of the nuclear power plants subjected to reverse cyclic loading. A three-dimensional finite element model is developed using ABAQUS by emphasizing on constitutive material modeling and element type to represent the real physical behavior of complex shear wall structures. The analysis escalates with parametric variation in steel thickness sandwiching the stipulated amount of concrete panels. Modeling details of structural components, contact conditions between steel and concrete, associated boundary conditions and constitutive relationships for the cyclic loading are explained. Later, the load versus displacement curves, peak load and ultimate strength values, hysteretic characteristics and deflection profiles are verified with experimental data. The convergence of the numerical outcomes has been discussed to conclude the remarks.

Quality Characteristics of Rice Noodles Supplemented with Turmeric, Purple Sweet Potato, or Seaweed (Hizikia fusiforme) (강황, 자색고구마, 톳을 첨가한 쌀국수의 품질 특성)

  • Hwang, Seong-Yun;Kang, Kun-Og
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.23 no.2
    • /
    • pp.211-217
    • /
    • 2013
  • We investigated the quality characteristics of rice noodles supplemented with turmeric, purple sweet potato, or seaweed (Hizikia fusiforme). RVA (Rapid Visco Analyser), color, water activity, texture, and cooking properties were tested. Initial gelatinization temperature of noodles containing turmeric were the highest. Peak viscosity, holding strength, break down, final viscosity, and set back of noodles containing purple sweet potato were highest, indicating that the gelatinization state was more unstable and retrogradation would occur faster. The L value of the seaweed noodle was the lowest, while the a and b value of the turmeric noodles were $7.3{\pm}0.3$ and $40.2{\pm}1.3$ respectively, higher values than turmeric and seaweed noodles. Water activity of the seaweed noodle was 0.665, higher than turmeric and purple sweet potato noodles. Cooking properties (including weight, volume, and water absorption) and turbidity of seaweed noodles showed the highest growth rate. In terms of texture, the hardness was highest in purple sweet potato noodles, and the cohesiveness and gumminess was highest in seaweed noodles. The quality characteristics of rice noodles supplemented with turmeric, purple sweet potato, or seaweed showed that seaweed noodles were stable in gelatinization and cooking properties.

Ion Pump Design for Improved Pumping Speed at Low Pressure

  • Paolini, Chiara;Audi, Mauro;Denning, Mark
    • Applied Science and Convergence Technology
    • /
    • v.25 no.6
    • /
    • pp.108-115
    • /
    • 2016
  • Even if ion pumps are widely and mostly used in ultra-high vacuum (UHV) conditions, virtually every existing ion pump has its maximum pumping speed around 1E-6 mbar (1E-4 Pa). Discharge intensity in the ion pump Penning cell is defined as the current divided by pressure (I/P). This quantity reflects the rate of cathode bombardment by ions, which underlies all of the various pumping mechanisms that occur in ion pumps (chemisorption on sputtered material, ion burial, etc.), and therefore is an indication of pumping speed. A study has been performed to evaluate the influence of magnetic fields and cell dimensions on the ion pump discharge intensity and consequently on the pumping speed at different pressures. As a result, a combination of parameters has been developed in order to design and build an ion pump with the pumping speed peak shifted towards lower pressures. Experimental results with several different test set-ups are presented and a prototype of a new 200 l/s ion pump with the maximum pumping speed in the 1E-8 mbar (1E-6 Pa) is described. A model of the system has also been developed to provide a framework for understanding the experimental observations.