• 제목/요약/키워드: peak runoff ratio

검색결과 52건 처리시간 0.025초

산림지역의 유출특성을 고려한 남강댐유역내 주요 하천관측지점에 대한 홍수유출량 추정 (Flood Runoff Estimation for the Streamflow Stations in Namgang-Dam Watershed Considering Forest Runoff Characteristics)

  • 김성재;박태양;장민원;김상민
    • 한국농공학회논문집
    • /
    • 제52권6호
    • /
    • pp.85-94
    • /
    • 2010
  • The objective of this study is to estimate the flood runoff for three guaged stations within Namgang-Dam watershed which are operated by KWATER. For a flood runoff simulation, HEC-HMS was applied and the simulated runoff was compared with observed from 2004 to 2008. The watershed area of Sancheong, Shinan, and Changchon were 693.6 $km^2$, 413.4 $km^2$, and 346.48 $km^2$, respectively. The average runoff ratio of observed runoff for three watersheds were 0.725, 0.418, and 0.586, respectively. The dominant land cover of three watersheds are forest with the value of 71.6 %, 73.1 %, and 82.0 %. Three different cases according to the potential maximum retention of forest areas for calculating the curve number were applied to decrease the error between the simulated and observed. The simulated peak runoff of case 3 which applied the 90 % of potential maximum retention of curve number which is equivalent to AMCI for all the AMCI, AMCII, and AMCIII conditions showed least root mean square error (RMSE). The case 1, which was suggested by previous study, showed high discrepancy between the simulated and observed. Since the forest area consists of more than 70 % for all three watersheds, the application of curve number for forest is critical to improve the estimation errors. Further research is required to estimate the more accurate curve number for forest area.

SWMM 분석을 통한 투수성 포장의 유출 저감 특성 평가 (Performance Evaluation of the Runoff Reduction with Permeable Pavements using the SWMM Model)

  • 임무광;류성우;박대근;이재훈;조윤호
    • 한국도로학회논문집
    • /
    • 제17권4호
    • /
    • pp.11-18
    • /
    • 2015
  • PURPOSES: This study aims to evaluate the runoff reduction with permeable pavements using the SWMM analysis. METHODS: In this study, simulations were carried out using two different models, simple and complex, to evaluate the runoff reduction when an impermeable pavement is replaced with a permeable pavement. In the simple model, the target area for the analysis was grouped into four areas by the land use characteristics, using the statistical database. In the complex model, simulation was performed based on the data on the sewer and road network configuration of Yongsan-Gu Bogwang-Dong in Seoul, using the ArcGIS software. A scenario was created to investigate the hydro-performance of the permeable pavement based on the return period, runoff coefficient, and the area of permeable pavement that could be laid within one hour after rainfall. RESULTS : The simple modeling analysis results showed that, when an impervious pavement is replaced with a permeable pavement, the peak discharge reduced from $16.7m^3/s$ to $10.4m^3/s$. This represents a reduction of approximately 37.6%. The peak discharge from the whole basin showed a reduction of approximately 11.0%, and the quantity decreased from $52.9m^3/s$ to $47.2m^3/s$. The total flowoff reduced from $43,261m^3$ to $38,551m^3$, i.e., by approximately 10.9%. In the complex model, performed using the ArcGIS interpretation with fewer permeable pavements applicable, the return period and the runoff coefficient increased, and the total flowoff and peak discharge also increased. When the return period was set to 20 years, and a runoff coefficient of 0.05 was applied to all the roads, the total outflow reduced by $5195.7m^3$, and the ratio reduced to 11.7%. When the return period was increased from 20 years to 30 and 100 years, the total outflow reduction decreased from 11.7% to 8.0% and 5.1%, respectively. When a runoff coefficient of 0.5 was applied to all the roads under the return period of 20 years, the total outflow reduction was 10.8%; when the return period was increased to 30 and 100 years, the total outflow reduction decreased to 6.5% and 2.9%, respectively. However, unlike in the simple model, for all the cases in the complex model, the peak discharge reductions were less than 1%. CONCLUSIONS : Being one of the techniques for water circulation and runoff reduction, a high reduction for the small return period rainfall event of penetration was obtained by applying permeable pavements instead of impermeable pavement. With the SWMM analysis results, it was proved that changing to permeable pavement is one of the ways to effectively provide water circulation to various green infrastructure projects, and for stormwater management in urban watersheds.

투수성 포장도로 도입을 통한 보광배수유역 유출량 저감효과 검토 (Effects of porous pavement on runoff reduction in Boguang subcatchment)

  • 정지윤;이건영;류재나;오재일
    • 상하수도학회지
    • /
    • 제27권2호
    • /
    • pp.251-259
    • /
    • 2013
  • Among various Green Infrastructure measures for urban stormwater management, effects of porous pavement were quantitatively examined in terms of hydrological cycle. Different scenarios for porous pavement were introduced on a SWMM model and the effects were compared and analysed using discharge hydrographs. Two types of pavements having different runoff coefficients (0.05 & 0.5) were introduced to cover different ratio of entire road areas (100 %, 77.5 % and 40.4 %) and these made up in total 6 different scenarios. Total runoff volume was reduced and peak flow was significantly decreased by applying the porous pavement. The highest reduction for total runoff was shown from S-6(covering area: 100 %, runoff coefficient: 0.05) as 19 % followed by S-5(covering area: 77.5 %, runoff coefficient: 0.05, 16 %), while that of S-2(covering area: 40.4 %, runoff coefficient: 0.05) and S-1(covering area: 40.4 %, runoff coefficient: 0.5) were the lowest with 8 % and 5 %. This proved that the application of porous pavement would improve urban hydrological cycle.

목감천 유역 내 투수성포장과 빗물저류조의 유출량 저감 성능 분석 및 설치 우선 순위 결정 (Analysis of runoff reduction performance of permeable pavement and rain barrel in Mokgam stream basin and determination of installation priorities)

  • 채승택;정은성;박인환
    • 한국수자원학회논문집
    • /
    • 제56권12호
    • /
    • pp.905-918
    • /
    • 2023
  • 본 연구에서는 목감천 유역에서 투수성포장(PP)과 빗물저류조(RB)의 설치에 의한 유출량 저감 성능 분석 및 유역 내 설치 우선순위를 결정했다. PP와 RB의 설치를 통한 최대 유출 저감 성능 도출을 위해 최적 설계인자를 결정했고, 최적 설계인자를 반영한 PP와 RB의 우수 유출 저감 성능을 비교했다. 유출량의 시계열 변화로부터 첨두유출량 발생 전에는 PP가, 첨두유출량 발생 후에는 RB가 유출량 저감에 더 우수한 성능을 나타냈다. PP와 RB의 설치에 따른 소유역 별 총 유출량, 첨두유출량 저감 성능을 비교한 결과, PP의 경우 유역면적이 큰 소유역에서 RB보다 더 높은 우수 유출저감 성능을 나타냈고 RB는 불투수면적 비율이 높은 지역에서 더 높은 성능을 나타냈다. PP와 RB의 우수 유출 저감 성능 평가 결과를 통해 목감천유역 내 두 시설의 설치 우선 순위를 결정했다. 그 결과, PP와 RB 모두 유역면적, 불투수면적 비율이 높은 소유역에서 높은 우선 순위가 나타났다. 또한 우수 유출 저감 성능 평가 순위와 유역특성 간 상관관계를 비교한 결과, 상위 25%의 우수 유출 저감 성능을 나타낸 소유역에서는 불투수면적외에도 유역의 형상 인자와 높은 상관관계를 보였다. 이를 통해 기존 도심 지역에 우수유출저감시설 설치 우선 순위 결정 시 불투수면적 비율과 함께 유역의 형상 인자를 함께 고려해야 함을 알 수 있다.

강우유출수 영향에 따른 시화호 소유역별 유입하천의 오염물질 초기유출현상 분석 (An Analysis of First Flush Phenomenon of 3 Catchment area in Lake Sihwa Watershed during Rainfall-Runoff Events)

  • 김세원;오종민
    • 한국물환경학회지
    • /
    • 제27권4호
    • /
    • pp.475-485
    • /
    • 2011
  • Lake Sihwa has a very unique watershed environment, surrounded by industrial, urban and rural catchment area with different land use. The first flush phenomenon was investigated in 3 catchment area. 4TG, representing the industrial area, shows rapid discharges of highly concentrated pollutants during the early stages of a storm and it is indicating a strong first flush effect. At AS, representing the urban area, the pollutant concentration reached its peak approximately 2~3 hours after the start of storm, which is a strong first flush effect did not appear. JJB and MS represent the rural areas, the PEMC analysis results suggest that highly concentrated pollutants were discharged during the middle and latter stages of a storm, instead of early pollutant runoff due to the effects of rainwater runoff.

급속한 도시확장지역의 토지이용도 종류에 따른 유출특성 비교 (Runoff Characteristics of Rapid Urban Expansion Area according to The Type of Land Use)

  • 박기범
    • 한국환경과학회지
    • /
    • 제22권9호
    • /
    • pp.1079-1088
    • /
    • 2013
  • The objective of this paper is compare to landuse type for calculating peak flood and soil loss in rapidly expansion urban area. This study compares two landuse maps, including numerical landuse map and aerial photograph landuse map, for calculating the ratio of urban and agriculural area, curve number, time of concentration, peak flood discharge, and soil loss. It is found that flood discharge calculated using aerial photograph landuse map are larger than that calculated using numerical landuse map, and soil loss calculated using aerial photograph landuse map are smaller than that calculated using numerical landuse map. Results also indicate that landuse chage in rapidly expansion urban area significantly influences flood discharge and soil loss.

SWMM을 이용한 조만강 유역 강우-오염물 유출모델링시스템 구축 (Establishment of Rainfall and Contaminants Runoff Modeling System for the Joman River Watershed Using SWMM)

  • 이용진;윤영삼;이남주
    • 한국환경과학회지
    • /
    • 제18권9호
    • /
    • pp.983-992
    • /
    • 2009
  • The purpose of the present study is to analyze pollutant runoff characteristics from non-point sources in Joman River basin. The present study contains analyzed results of rainfall and SS, BOD, COD, TN, TP runoff from Joman River basin. This study contains a sensitivity analysis of parameters that affect the simulation results of rainfall and pollutants runoff. Result of the sensitivity analysis shows that proportion of watershed and impervious areas is the most sensitive to peak discharge and total flowrate for rainfall runoff and that WASHPO is the most sensitive parameter for pollutants runoff. For parameter estimation and verification, flowrate and water quality is measured at the Kangdong Bridge in Haeban stream. A single rainfall event is use to perform parameter estimation and verification. Results of the present study show that total pollutant loads of Joman River basin is 11,600 ton of SS, 452 ton of BOD, 1,084 ton of COD, 515 ton of TN, and 49 ton of TP, respectively. In addition, it is found that contribution ratio of non point source and total source is 89% of SS, 63% of BOD, 61% of COD, 21% of TN, and 32% of TP, respectively.

제주도 화산도서에서 도시화유역 내수처리시스템 설계를 위한 유출특성분석 (A Runoff Characteristics Analysis for the Design of Interior Drainage Systems at Urbanization Catchment in the Cheju Volcanic Island)

  • 김성원
    • 한국농공학회지
    • /
    • 제41권1호
    • /
    • pp.39-51
    • /
    • 1999
  • This study has an object to evaluate runoff characteristics with ILLUDAS model and SWMM owing to each rainfall distribution type of Huff's quartile and each rainfall duration time of 30 ,60, 120 and 180 minutes. As a result of this study, Type-Ⅰ Extreme (TIE) rainfall distribution pattern with Huff's 2nd quartile is adequate for Cheju volcanic island . To decide optimal rain fall duration , time of concentration and critical duration should be compared and analyzed each other. In this study, 30 and 120 miniutes were suggeste to iptiaml duration time of A and B study basins. It is concluded that the magnitude of peak runoff discharge is maximum with Huff's 4th quartile, and that of total runoff volume is maximum with Huff's 4th quartile for ILLUDAS model and with Huff's 1st quartile for SWMM. As rainfall duration time increasing is increasing . Also in case of total runoff volume, volumen by SWMM is less than by ILLUDAS model as to variation ratio of total runoff volume in A and B study basin. Therefore, the resulots of this study canb e sued as basic data in determining adequate rainfoal duration time and rainfall distribution type and used for urban drainage systems analysis and design at small urbanization catchment is Cheju volcanic island.

  • PDF

Design of Detention Pond and Critical Duration of Design Rainfall in Seoul

  • Lee, Jong-Tae;Yoon, Sei-Eui;Lee, Jae-Joon
    • Korean Journal of Hydrosciences
    • /
    • 제5권
    • /
    • pp.33-43
    • /
    • 1994
  • This study is to determine the critical duration of design rainfall and to utilize it for the design of detention pond with pump station. To examine the effect of the duration and temporal distribytion of the design rainfall, Huff's quartile method is used for the 9 cases of durations (ranges from 20 to 240 minutes) with ten years return period, and the ILLUDAS model is used for runoff analysis. The storage ratio, which is the ratio of maximum storage amounts to total runoff volume, is introduced to determine the criticalduration of design rainfall. The duration which maximizes the storage ratio is adopted as the critical duration. This study is applied to 18 urban drainage watercheds with pump station in Seoul, of which the range of watershed area is 0.24~12.70$km^2$. The result of simulation shows that the duration which maximizes storage ratio is 30 and 60 minutes on the whole. It is also shown that the storage ratios of 2nd - and 3rd-quartile pattern are larger than those of 1st- and 4th-quartile pattern of temporal distribution. A simplified empirical formula for Seoul area is suggested by the regression analysis between the maximum storage ratio and the peak ratio. This formula can be utilized for the preliminary design and planning of detention pond with pump station.

  • PDF

설계강우조건에 따른 SWMM모형 매개변수의 민감도 분석 (Sensitivity Analysis of the SWMM Model Parameters Based on Design Rainfall Condition)

  • 이종태;허성철;김태화
    • 한국수자원학회논문집
    • /
    • 제38권3호
    • /
    • pp.213-222
    • /
    • 2005
  • 이 연구에서는 다양한 강우조건에 따른 도시유출모형, SWMM의 매개변수들이 계산 결과치에 주는 민감도를 분석하였으며 이를 위해 3개 배수구역에 대하여 모형을 적용하였다. 첨두 유출량에 대한 민감도는 $S_Q$ (=1.0-(첨두유출량의 최소값($Q_{p,min}$)/첨두유출량의 최대값($Q_{p,max}$)))로 나타내었으며 강우 조건으로서는 강우규모, 강우지속시간, 강우분포 등의 3가지를 채택하였다. 강우조건의 변화에 따라 전반적으로는 불투수면적비, 관로경사, 초기침투능 등이 계산 결과치에 주는 민감도가 큰 것으로 분석되었다. 강우규모의 증가에 따라 관로경사 및 조도계수에 의한 영향이 증가되었고, 강우규모가 작아질수록 지표면 유출관련 매개변수가 민감하였다. 한편, 강우지속시간의 증가에 따라 대부분의 지표면 유출 및 관거흐름에 대한 매개변수들의 민감도가 둔감해지는 경향을 보였다. 강우분포에 대하여서는 Huff 1분위에서는 불투수면적비가 가장 민감하였으며 4분위에서는 관거흐름과 관련된 매개변수들이 민감하였다. 이러한 경향은 유효우량의 계산과 지표 및 관거흐름에 대한 운동파 해석과정에 기인하는 것으로 설명될 수 있다.