• Title/Summary/Keyword: peak runoff

Search Result 414, Processing Time 0.035 seconds

A Study on Proper Number of Subbasin Division for Runoff Analysis Using Clark and ModClark Methodsdd in Midsize Basins (중규모 유역에서 Clark 방법과 ModClark 방법을 이용한 유출해석 시적정 소유역 분할 개수에 대한 연구)

  • Lee, Donghoon;Choi, Jongin;Shin, Soohoon;Yi, Jaeeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.157-170
    • /
    • 2013
  • In this study, flood runoff characteristics is analyzed according to subbasin divisions by physically based rainfall-runoff model and appropriate number of subbasin divisions is suggested for midsize test basins. The Clark method, a lumped model in HEC-HMS, and the ModClark method, a semi-distributed model are used to simulate rainfall-runoff processes on Andong-reservoir basin, Imha-reservoir basin, and Pyeongchang river basin. The test basins were divided into nine subdivision cases by equal-area subdivision method such as single basin, 3, 5, 6, 7, 9, 10, 12, and 15 subbasins, and compared the simulated and observed values in terms of the peak flow and the peak time. The simulation results indicated that the peak flows tended to increase and the peak time shifted earlier as the number of subdivisions increased and this tendency weakened after the certain number of subdivisions. In this research, the specific number of subdivision was defined as the minimum number of subdivision considering both peak flow and peak time. Consequently, the minimum number of subdivisions is determined as 5 for Andong and Imha reservoir basins and 7 for Pyeongchang river basin.

Assessing the impact of urbanization on runoff and non-point source pollution using the GIS L-THIA (GIS L-THIA를 이용한 도시화에 따른 유출과 비점원오염 영향 평가)

  • Yun, La-Young;Kim, Dong-Hui;Gwon, Hyeok-Hyeon;Sin, Seung-Cheol;Son, Kwang-Ik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1802-1806
    • /
    • 2006
  • It is important to consider the effects of land-use changes on surface runoff, stream flow, and groundwater recharge. Expansion of urban areas significantly impacts the environment in terms of ground water recharge, water pollution, and storm water drainage. Increase of impervious area due to urbanization leads to an increase in surface runoff volume, contributes to downstream flooding and a net loss in groundwater recharge. Assessment of the hydrologic impacts or urban land-use change traditionally includes models that evaluate how land use change alters peak runoff rates, and these results are then used in the design of drainage systems. Such methods however do not address the long-term hydrologic impacts of urban land use change and often do not consider how pollutants that wash off from different land uses affect water quality. L-THIA (Long-Term Hydrologic Impact Assessment) is an analysis tool that provides site-specific estimates of changes in runoff, recharge and non point source pollution resulting from past or proposed land-use changes. It gives long-term average annual runoff for a land use configuration, based on climate data for that area. In this study, the environmental and hydrological impact from the urbanized basin had been examined with GIS L-THIA in Korea.

  • PDF

Parameter Optimization for Runoff Calibration of SWMM (SWMM의 유출량 보정을 위한 매개변수 최적화)

  • Cho, Jae-Heon;Lee, Jong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.6
    • /
    • pp.435-441
    • /
    • 2006
  • For the calibration of rainfall-runoff model, automatic calibration methods are used instead of manual calibration to obtain the reliable modeling results. When mathematical programming techniques such as linear programming and nonlinear programming are applied, there is a possibility to arrive at the local optimum. To solve this problem, genetic algorithm is introduced in this study. It is very simple and easy to understand but also applicable to any complicated mathematical problem, and it can find out the global optimum solution effectively. The objective of this study is to develope a parameter optimization program that integrate a genetic algorithm and a rainfall-runoff model. The program can calibrate the various parameters related to the runoff process automatically. As a rainfall-runoff model, SWMM is applied. The automatic calibration program developed in this study is applied to the Jangcheon watershed flowing into the Youngrang Lake that is in the eutrophic state. Runoff surveys were carried out for two storm events on the Jangcheon watershed. The peak flow and runoff volume estimated by the calibrated model with the survey data shows good agreement with the observed values.

Estimation of the Parameters for the Clark Model through the Rainfall-Runoff Events (강우 유출사상을 통한 Clark 모형의 매개변수 평가)

  • Ahn, Tae-Jin;Baek, Chun-Woo;Kim, Min-Hyuk;Choi, Kwang-Hoon;Kang, In-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.770-774
    • /
    • 2006
  • The determination of feasible design flood is the most important to control flood damage in river management. Model parameters should be calibrated using observed discharge but due to deficiency of observed data the parameters have been adopted by engineer's empirical sense. Storage coefficient in the Clark unit hydrograph method mainly affects magnitude of peak flood. This study is to estimate the storage coefficients based on the observed rainfall-runoff events at the four stage stations in the Hantan river basin. Model calibration is the process of adjusting model parameter values until model results match historical data. An objective function which is the percent difference between the observed and computed peak flows is available for measuring the goodness-of-fit between computed and observed hydrographs. By sensitivity analysis for the storage coefficient, it has been shown that the storage coefficients affect the peak flows. The Clark parameters adopted in the River Rectification Basic Plan have been estimated through an iterative process designed to produce a hydrograph with the peak flow.

  • PDF

Comparison of NPS Pollution Characteristics between Snowmelt and Rainfall Runoff from a Highland Agricultural Watershed (고랭지 밭 유역에서 융설과 강우유출로 발생하는 비점오염원의 특성 비교)

  • Choi, Yong-Hun;Won, Chul-Hee;Park, Woon-Ji;Shin, Min-Hwan;Shin, Jae-Young;Lee, Su-In;Choi, Joong-Dae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.523-530
    • /
    • 2012
  • Runoff, NPS pollution load and flow-weighted mean concentration (FWMC) occurred by snowmelt and rainfall runoff were compared by a variance analysis. Snowmelt runoff ranged between 1,449 and $19,921m^3$. The peak snowmelt runoff was similar to the runoff that occurred by about 40mm/day rainfall. And average snowmelt runoff was not significantly different from the runoff that occurred by 25.5 mm/day rainfall. Average values of SS loads and FWMCs were 5,438 kg/day and 954.9 mg/L, respectively. SS loads and FWMCs were in the similar range with those that occurred by 39.0 mm/day and 53.0 mm/day rainfall, respectively. Daily SS and COD loads and FWMCs occurred by snowmelt and rainfall were analyzed not to be significantly different. Overall assessment led that the NPS pollution loads by snowmelt runoff had a similar characteristics with the loads by about 40 mm/day rainfall runoff. It was recommended that the agricultural fields in snowy region needs to managed not only for rainfall runoff but also snowmelt runoff for an effective water quality management.

Discharge Estimation at Ungauged Catchment Using Distributed Rainfall-Runoff Model (분포형 강우-유출 모형을 이용한 미계측 중소유역의 유량 추정)

  • Choi, Yun-Seok;Kim, Kyung-Tak;Shim, Myung-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.4
    • /
    • pp.353-365
    • /
    • 2010
  • Generally, river discharge is measured at flood forecasting points, upstream dam points, large rivers, and important points over a basin, and it is hard to estimate discharge of medium or small stream and small catchment. Physically based rainfall-runoff model with geographical parameters can simulate discharge at all the points within a basin with optimized parameters for a point in the basin. In this study, GRM (Grid based Rainfall-runoff Model) calibrated at the outlet is applied. The discharge at upstream point is estimated and the possibility of model regionalisation is examined for ungauged catchment of small or medium stream within a river system. Wicheon and Boksu watershed in Nakdonggang (Riv.) and Yudeungcheon (Riv.) respectively are selected. The discharge at Miseong and Sindae station is simulated with the parameters estimated at Museong and Boksu station. The results of Miseong and Sindae station show good agreement with observed hydrographs in peak discharge and peak time and consistently linear relationships with high correlations in discharge volume, peak discharge, and peak time. And it shows GRM could be applied to estimate discharge at ungauged catchments along a river system.

LIDMOD Development for Evaluating Low Impact Development and Its Applicability to Total Maximum Daily Loads (지속가능한 도시개발을 위한 LID평가모델(LIDMOD)개발과 수질오염총량제에 대한 적용성 평가)

  • Jeon, Ji-Hong;Choi, Dong Hyuk;Kim, Tae Dong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.58-68
    • /
    • 2009
  • Low impact development (LID) technique is relatively new concept to reduce surface runoff and pollutant loading from land cover by attempting to match predevelopment condition with various integrated management practices (IMPs). In this study, computational model for designing and evaluating LID, named LIDMOD, was developed based on SCS-CN method and applied at Andong bus terminal to evaluate LID applicapability and design retention/detention area for volume or peak flow control. LIDMOD simulated with 21 years simulation period that yearly surface runoff by post-development without LID was significantly higher than that with LID showing about 2.8 times and LID could reduce efficiently yearly surface runoff with 75% reduction of increased runoff by conventional post development. LIDMOD designed detention area for volume/peak flow control with 20.2% of total area by hybrid design. LID can also efficiently reduce pollutant load from land cover. Pollutant loads from post-development without LID was much higher than those from pre-development with showing 37 times for BOD, 2 times for TN, and 9 times for TP. Pollutant loads from post-development with LID represented about 57% of those without LID. Increasing groundwater recharge reducing cooling and heating fee, creating green refuge at building area can be considered as additional benefits of LID. At the point of reducing runoff and pollutant load, LID might be important technique for Korean TMDL and LIDMOD can be useful tool to calculate unit load for the case of LID application.

Loading Rates and Characteristics of Litter from Highway Stormwater Runoff (강우로 인해 고속도로로부터 유출되는 폐기물의 성상, 부하량 및 유출 특성)

  • Kim, Lee-Hyung;Kang, Joohyon
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.415-421
    • /
    • 2004
  • Litter wastes on highway runoff are gradually being considered one of the major pollutants of concern in protecting the integrity of receiving waters for beneficial use. The California State Water Resources Control Board has identified in their 303(d) list at least 36 water bodies where trash or litter is considered a pollutant of concern. The first TMDL adopted by the Region 4 (Los Angeles area) of the California State Water Quality Control Board was for trash in the Los Angeles River. The first flush characteristic study was developed to obtain first flush water quality and litter data from representative stormwater runoff from standard highway drainage outfalls in the Los Angeles area. Total captured gross pollutants in stormwater runoff were monitored at six Southern California highway sites over two years. The gross pollutants were 90% vegetation and 10% litter. Approximately 50% of the litter was composed of biodegradable materials. The event mean concentrations show an increasing trend with antecedent dry days and a decreasing trend with total runoff volume or total rainfall. Event mean concentrations were ranged 0.0021 to 0.259g/L for wet gross pollutants and 0.0001 to 0.027g/L for wet litters. The first flush phenomenon was evaluated and the impacts of various parameters such as rainfall intensity, drainage area, peak flow rate, and antecedent dry period on litter volume and loading rates were evaluated. First flush phenomenon was generally observed for litter concentrations, but was not apparent with litter mass loading rates. Litter volume and loading rates appear to be directly related to peak storm intensity, antecedent dry days and total flow volume.

Analysis of Rainfall-Runoff Characteristics on Bias Correction Method of Climate Change Scenarios (기후변화 시나리오 편의보정 기법에 따른 강우-유출 특성 분석)

  • Kum, Donghyuk;Park, Younsik;Jung, Young Hun;Shin, Min Hwan;Ryu, Jichul;Park, Ji Hyung;Yang, Jae E;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.3
    • /
    • pp.241-252
    • /
    • 2015
  • Runoff behaviors by five bias correction methods were analyzed, which were Change Factor methods using past observed and estimated data by the estimation scenario with average annual calibration factor (CF_Y) or with average monthly calibration factor (CF_M), Quantile Mapping methods using past observed and estimated data considering cumulative distribution function for entire estimated data period (QM_E) or for dry and rainy season (QM_P), and Integrated method of CF_M+QM_E(CQ). The peak flow by CF_M and QM_P were twice as large as the measured peak flow, it was concluded that QM_P method has large uncertainty in monthly runoff estimation since the maximum precipitation by QM_P provided much difference to the other methods. The CQ method provided the precipitation amount, distribution, and frequency of the smallest differences to the observed data, compared to the other four methods. And the CQ method provided the rainfall-runoff behavior corresponding to the carbon dioxide emission scenario of SRES A1B. Climate change scenario with bias correction still contained uncertainty in accurate climate data generation. Therefore it is required to consider the trend of observed precipitation and the characteristics of bias correction methods so that the generated precipitation can be used properly in water resource management plan establishment.

Runoff Analysis using ModClark Model (ModClark 모형을 이용한 유출 해석)

  • Ahn, Sang-Jin;Yoon, Seok-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.3 s.152
    • /
    • pp.245-257
    • /
    • 2005
  • The purpose of the present study is examining the changes of runoff characteristics and extracting hydrologic parameters by applying ModClark model on grid divided watershed. Bocheong stream basin in Geum River system, one of the representative watersheds of IHP projects, is selected. Hydrology-based topographical informations are calculated using GIS data in the HEC-GeoHMS V1.1 extension in Arcview 3.2. The ModClark model requires precipitation data in a gridded format. The gridded data must be recorded in the HEC Data Storage System file format. Therefore, kriging method was used to interpolate the point values to create a grid that gives each cell over the entire watershed a precipitation value. Hec-DSSVue program was used to create DSS file for the rain gage data. The completed HEC-HMS model was calibrated for use in simulating three measured storm events and cell size of 10000m, 5000m, 2000m, 1000m was chosen for the application. As the result of applying distributed rainfall-runoff model to analyze relatively good agreement for peak discharge, runoff volume and peak time.