• 제목/요약/키워드: peak rainfall intensity

검색결과 78건 처리시간 0.038초

다양한 강우강도 및 패턴에 따른 WEPP 모형의 유출‧첨두유출‧토양유실량 평가 (Evaluation of Runoff‧Peak Rate Runoff and Sediment Yield under Various Rainfall Intensities and Patterns Using WEPP Watershed Model)

  • 최재완;류지철;김익재;임경재
    • 한국수자원학회논문집
    • /
    • 제45권8호
    • /
    • pp.795-804
    • /
    • 2012
  • 최근 강우강도 및 패턴이 변화함에 따라 전세계적으로 토양유실이 증가하고 있다. 그 결과, 수생태계 건전성이 악화되고, 농업작물이 피해를 입어 수확량이 감소된다. 그동안 유출 및 토양유실을 예측하거나 비점오염원을 감소시키는 연구가 많이 수행되어 왔다. USLE는 수년간 토양유실을 산정하는데 사용되어왔으나, 강우강도나 패턴변화를 적용하기에는 적절하지 못했다. 물리적 기반인 WEPP 모형은 다양한 강우강도 및 패턴변화를 적용하는데 적절하다. 본 연구에서는 WEPP 모형을 이용하여 Huff의 4분위, 다양한 강우간격, 설계강우에 따른 토양유실, 유출, 첨두유출을 산정하였다. 5분간격 강우 데이터와 60분 간격 강우 데이터를 비교한 결과 토양유실은 24%, 유출은19%, 첨두유출은 16%가 차이나는 것으로 나타났다. 유출 및 토양유실이 5분 간격 강우량에서 실측치와 가장 유사한 것으로 나타나 강우데이터의 간격이 짧을수록 더 정확하게 모의할 수 있는 것으로 나타났다. Huff의 4분위를 이용하여 토양유실량, 유출량, 첨두유출량을 산정한 결과 토양유실량, 유출량, 첨두유출량 모두 3분위에서 가장 높게 발생하는 것으로 나타났다. 강원도 홍천지역 빈도별 확률강우를 이용하여 토양유실량, 유출량, 첨두유출량의 변화를 모의하였다. 2년 빈도와 300년 빈도에서 강우량은 167% 증가하였다. 유사량과 유출량, 첨두유출량은 각각 906.2%, 249.4%, 183.9% 증가하여 유사량의 증가율이 가장 큰 것으로 나타났다. 본 연구의 결과에서 보이는 바와 같이 WEPP 모형을 이용하여 향후 기후변화에 따른 유출 및 토양유실의 예측이 가능할 것으로 판단된다.

강우의 개념적 시간분포와 설계홍수량 산정에 관한 연구 (The Estimations of A Conceptual Time Distribution of Rainfall and Design Flood)

  • 이병운;장대원;김형수;서병하
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.937-942
    • /
    • 2005
  • It is necessary to estimate the runoff hydrograph and peak flood discharge using law of probability for synthetic flood control policy and design of hydraulic structures. Rainfall analysis is needed in the process of peak flood discharge estimation and the time distribution of a design rainfall is a very important process in the analysis. In this study, we estimate design flood for a small urban basin and a rural basin of medium scale which have different travel times. The Huff method is widely used in Korea for the time distribution of design rainfall to estimate design flood. So, we use Huff method and a conceptual method which is suggested in this study for the comparative purpose. The 100-year frequency rainfall is used to estimate design flood for each basin and the design flood is compared with the existing design flood. As the result, the design flood is overestimated $14.6m^3/sec$ by Huff method and is underestimated $70.9m^3/sec$ by a conceptual method for the rural basin. For the small urban basin, the design flood is excessively overestimated $294.65m^3/sec$ by Huff method and is overestimated $173m^3/sec$ by a conceptual method. The reason of excessive overestimation by Huff method in the small urban basin is that the increased rate of rainfall intensity according to the decrease of duration is large and the duration exceeds the time of concentration when the increased rainfall intensity is concentrated in a quartile. Therefore, we suggested a conceptual method for the time distribution of design rainfall by considering the rainless period and duration. Especially, the conceptual method might be useful for the small urban basin with short concentration time which the design flood is overestimated by Huff method.

  • PDF

강우특성별 최적 우수관망에서의 유출 변화 분석 (Analysis of flow change in optimal sewer networks for rainfall characteristics)

  • 이정호
    • 한국산학기술학회논문지
    • /
    • 제12권4호
    • /
    • pp.1976-1981
    • /
    • 2011
  • 본 연구에서는 도시유역 우수관거 시스템의 근본적인 목적인 내수침수 방재 효과를 최대화하기 위하여 첨두유출량 최소화를 목적으로 하여 개발된 우수관망 최적설계 모형(이정호, 2010)[1]을 이용하여 실제 도시유역에 대하여 다양한 인공적인 강우 사상들을 적용하여 실제 강우 발생 시 첨두유출량 저감의 효과가 발생할 수 있을 것인가에 대하여 분석하였다. 분석에 적용된 강우사상은 첫째, 설계빈도에 해당하는 강우사상에 대하여 강우의 첨두치가 일정한 시간 간격을 두고 연속되어 발생하는 강우사상들에 대하여 모의하였다. 둘째, 일정한 강도의 강우가 연속적으로 발생하는 연속강우사상에 대하여 모의하였다. 분석 결과 강우의 첨두치가 연속되는 경우 또는 일정한 강도의 연속강우에 대해서도 최적 우수관망에서 첨두유출량이 저감되는 것으로 분석되었으며, 이것은 최적화된 우수관망이 시스템 내의 지체 현상에 따른 첨두유출량 감소가 아닌 관망 전체에서의 유입량의 적정 분배에 따른 것임을 나타낸다.

지상인자에 의한 순간단위도 유도와 유출량 예측 (Derivation of the Instantaneous Unit Hydrograph and Estimation of the Direct Runoff by Using the Geomorphologic Parameters)

  • 천만복;서승덕
    • 한국농공학회지
    • /
    • 제32권3호
    • /
    • pp.87-101
    • /
    • 1990
  • The purpose of this study is to estimate the flood discharge and runoff volume at a stream by using geomorphologic parameters obtained from the topographic maps following the law of stream classification and ordering by Horton and Strahier. The present model is modified from Cheng' s model which derives the geomorphologic instantaneous unit hydrograph. The present model uses the results of Laplace transformation and convolution intergral of probability density function of the travel time at each state. The stream flow velocity parameters are determined as a function of the rainfall intensity, and the effective rainfall is calculated by the SCS method. The total direct runoff volume until the time to peak is estimated by assuming a triangular hydrograph. The model is used to estimate the time to peak, the flood discharge, and the direct runoff at Andong, Imha. Geomchon, and Sunsan basin in the Nakdong River system. The results of the model application are as follows : 1.For each basin, as the rainfall intensity doubles form 1 mm/h to 2 mm/h with the same rainfall duration of 1 hour, the hydrographs show that the runoff volume doubles while the duration of the base flow and the time to peak are the same. This aggrees with the theory of the unit hydrograph. 2.Comparisions of the model predicted and observed values show that small relative errors of 0.44-7.4% of the flood discharge, and 1 hour difference in time to peak except the Geomchon basin which shows 10.32% and 2 hours respectively. 3.When the rainfall intensity is small, the error of flood discharge estimated by using this model is relatively large. The reason of this might be because of introducing the flood velocity concept in the stream flow velocity. 4.Total direct runoff volume until the time to peak estimated by using this model has small relative error comparing with the observed data. 5.The sensitivity analysis of velocity parameters to flood discharge shows that the flood discharge is sensitive to the velocity coefficient while it is insensitive to the ratio of arrival time of moving portion to that of storage portion of a stream and to the ratio of arrival time of stream to that of overland flow.

  • PDF

합류식하수도 월류수 관리를 위한 초기우수 저류조 설계방안 연구 (A Study on First Flush Storage Tank Design for Combined Sewer Overflows (CSOs) Control)

  • 손봉호;어성욱
    • 한국물환경학회지
    • /
    • 제27권5호
    • /
    • pp.654-660
    • /
    • 2011
  • One of the best way to control Combined Sewer Overflow (CSO) is proposed to construct first flush storage tank. But there is little known parameters for optimum design of these facilities. This study was conducted to get optimum design parameters for a first flush storage tank construction. The optimization of the tank is generally based upon some measure of SS(Suspended Solid) mass holding efficiency. Water quality deterioration of receiving water body happened right after first time occurring rainfall in dry weather seasons. So, design rainfall intensity is used at 2 mm/hr for peak of monthly average intensities of dry seasons. The capacities for each evaluated catchment are designed from 14.4 min to 16.1 min HRT of CSOs flow at design rainfall intensity. Owing to all storage tanks are connected to interception sewer having a redundancy, the suggested volume could be cut down.

Comparative Study on the Runoff Process of Granite Drainage Basins in Korea and Mongolia

  • Tanaka, Yukiya;Matsukura, Yukinori
    • 한국제4기학회지
    • /
    • 제17권2호
    • /
    • pp.79-84
    • /
    • 2003
  • This study revealed the differences in runoff processes of granite drainage basins in Korea and Mongolia by hydrological measurements in the field. The experimental drainage basins are chosen in Korea (K-basin) and Mongolia (M-basin). Occurrence of intermittent flow in K-basin possibly implies that very quick discharge dominates. The very high runoff coefficient implies that most of effective rainfall quickly discharge by throughflow or pipeflow. The Hortonian overlandflow is thought to almost not occur because of high infiltration capacity originated by coarse grain sized soils of K- basin. Very little baseflow and high runoff coefficient also suggest that rainfall almost does not infiltrate into bedrocks in K-basin. Flood runoff coefficient in M-basin shows less than 1 %. This means that most of rainfall infiltrates or evaporates in M-basin. Runoff characteristics of constant and gradually increasing discharge imply that most of rainfall infiltrates into joint planes of bedrock and flow out from spring very slowly. The hydrograph peaks are sharp and their recession limbs steep. Very short time flood with less than 1-hour lag time in M-basin means that overland flow occurs only associating with rainfall intensity of more than 10 mm/hr. When peak lag time shows less than 1 hour for the size of drainage area of 1 to 10 km2, Hortonian overland flow causes peak discharge (Jones, 1997). The results of electric conductivity suggest that residence time in soils or weathered mantles of M-basin is longer than that of K-basin. Qucik discharge caused by throughflow and pipeflow occurs dominantly in K-basin, whereas baseflow more dominantly occur than quick discharge in M-basin. Quick discharge caused by Hortonian overlandflow only associating with rainfall intensity of more than 10 mm/hr in M-basin.

  • PDF

Time Series Analysis of SPOT VEGETATION Instrument Data for Identifying Agricultural Pattern of Irrigated and Non-irrigated Rice cultivation in Suphanburi Province, Thailand

  • Kamthonkiat, Daroonwan;Kiyoshi, Honda;Hugh, Turral;Tripathi, Nitin K.;Wuwongse, Vilas
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.952-954
    • /
    • 2003
  • In this paper, we present the different characteristics of NDVI fluctuation pattern between irrigated and non-irrigated area in Suphanburi province, in Central Thailand. For non-irrigated rice cultivation area, there is a strong correlation between NDVI fluctuation and peak rainfall, while there is a lower correlation with irrigated area. In this study, the 'peak detector' classifier was developed to identify the area of non-irrigated and irrigated cropping and its cropping intensity (number of crops per year). This classifier was created based on cropping characteristics such as number of crops, time or planting period of each crop and its relationship with the peak of rainfall. The classified result showed good accuracy in identification irrigated and nonirrigated rice cultivation areas.

  • PDF

Effect of Rainfall Patterns on the Response of Water Pressure and Slope Stability Within a Small Catchment: A Case Study in Jinbu-Myeon, South Korea

  • Viet, Tran The;Lee, Giha;Oh, Sewook;Kim, Minseok
    • 한국지반환경공학회 논문집
    • /
    • 제17권12호
    • /
    • pp.5-16
    • /
    • 2016
  • This study aims to assess the influence of rainfall patterns on shallow landslides initiation. Doing so, five typical rainfall patterns with the same cumulative amount and intensity components comprising Advanced (A1 and A2), Centralized (C), and Delayed (D1 and D2) were designed based on a historical rainstorm event in Jinbu. Mt area. Those patterns were incorporated as the hydrological conditions into the Transient Rainfall Infiltration and Grid-based Regional Slope-stability Model (TRIGRS) to assess their influences on groundwater pressure and changes in the stability of the slope. The results revealed that not only the cumulative rainfall thresholds necessary to initiate landslides, but also the rate at which the factor of safety decreases and the time required to reach the critical state, are governed by rainfall patterns. The sooner the peak rainfall intensity, the smaller the cumulative rainfall threshold, and the shorter the time until landslide occurrence. Left-skewed patterns were found to have a greater effect on landslide initiation. Specifically, among five rainfalls, pattern (A1) produced the most critical state. The severity of response was followed by patterns A2, C, D1, and D2. Our conclusion is that rainfall patterns have a significant effect on the cumulative rainfall threshold, the build-up of groundwater pressure, and the occurrence of shallow landslides.