• Title/Summary/Keyword: peak power

Search Result 2,626, Processing Time 0.034 seconds

Construction of Delay Predictine Models on Freeway Ramp Junctions with 70mph Speed Limit (70mph 제한속도를 갖는 고속도로 진출입램프 접속부상의 지체예측모형 구축에 관한 연구)

  • 김정훈;김태곤
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.131-140
    • /
    • 1999
  • Today freeway is experiencing a severe congestion with incoming or outgoing traffic through freeway ramps during the peak periods. Thus, the objectives of this study is to identify the traffic characteristics, analyze the relationships between the traffic characteristics and finally construct the delay predictive models on the ramp junctions of freeway with 70mph speed limit. From the traffic analyses, and model constructions and verifications for delay prediction on the ramp junctions of freeway, the following results were obtained: ⅰ) Traffic flow showed a big difference depending on the time periods. Especially, more traffic flows were concentrated on the freeway junctions in the morning peak period when compared with the afternoon peak period. ⅱ) The occupancy also showed a big difference depending on the time periods, and the downstream occupancy(Od) was especially shown to have a higher explanatory power for the delay predictive model construction on the ramp junction of freeway. ⅲ) The speed-occupancy curve showed a remarkable shift based on the occupancies observed ; Od < 9% and Od$\geq$9%. Especially, volume and occupancy were shown to be highly explanatory for delay prediction on the ramp junctions of freeway under Od$\geq$9%, but lowly for delay predicion on the ramp junctions of freeway under Od<9%. Rather, the driver characteristics or transportation conditions around the freeway were through to be a little higher explanatory for the delay perdiction under Od<9%. ⅳ) Integrated delay predictive models showed a higher explanatory power in the morning peak period, but a lower explanatory power in the non-peak periods.

Biomechanical Analysis of Injury Factor According to the Change of Direction After Single-leg Landing

  • Kim, Jong-Bin;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.4
    • /
    • pp.433-441
    • /
    • 2016
  • Objective: The purpose of this study was to understand the injury mechanism and to provide quantitative data to use in prevention or posture correction training by conducting kinematic and kinetic analyses of risk factors of lower extremity joint injury depending on the change of direction at different angles after a landing motion. Method: This study included 11 men in their twenties (age: $24.6{\pm}1.7years$, height: $176.6{\pm}4.4cm$, weight: $71.3{\pm}8.0kg$) who were right-leg dominant. By using seven infrared cameras (Oqus 300, Qualisys, Sweden), one force platform (AMTI, USA), and an accelerometer (Noraxon, USA), single-leg drop landing was performed at a height of 30 cm. The joint range of motion (ROM) of the lower extremity, peak joint moment, peak joint power, peak vertical ground reaction force (GRF), and peak vertical acceleration were measured. For statistical analysis, one-way repeated-measures analysis of variance was conducted at a significance level of ${\alpha}$ <.05. Results: Ankle and knee joint ROM in the sagittal plane significantly differed, respectively (F = 3.145, p = .024; F = 14.183, p = .000), depending on the change of direction. However, no significant differences were observed in the ROM of ankle and knee joint in the transverse plane. Significant differences in peak joint moment were also observed but no statistically significant differences were found in negative joint power between the conditions. Peak vertical GRF was high in landing (LAD) and after landing, left $45^{\circ}$ cutting (LLC), with a significant difference (F = 9.363, p = .000). The peak vertical acceleration was relatively high in LAD and LLC compared with other conditions, but the difference was not significant. Conclusion: We conclude that moving in the left direction may expose athletes to greater injury risk in terms of joint kinetics than moving in the right direction. However, further investigation of joint injury mechanisms in sports would be required to confirm these findings.

Energy Balance and Power Performance Analysis for Satellite in Low Earth Orbit

  • Jang, Sung-Soo;Kim, Sung-Hoon;Lee, Sang-Ryool;Choi, Jae-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.3
    • /
    • pp.253-262
    • /
    • 2010
  • The electrical power system (EPS) of Korean satellites in low-earth-orbit is designed to achieve energy balance based on a one-orbit mission scenario. This means that the battery has to be fully charged at the end of a one-orbit mission. To provide the maximum solar array (SA) power generation, the peak power tracking (PPT) method has been developed for a spacecraft power system. The PPT is operated by a software algorithm, which tracks the peak power of the SA and ensures the battery is fully charged in one orbit. The EPS should be designed to avoid the stress of electronics in order to handle the main bus power from the SA power. This paper summarizes the results of energy balance to achieve optimal power sizing and the actual trend analysis of EPS performance in orbit. It describes the results of required power for the satellite operation in the worst power conditions at the end-of-life, the methods and input data used in the energy balance, and the case study of energy balance analyses for the normal operation in orbit. Both 10:35 AM and 10:50 AM crossing times are considered, so the power performance in each case is analyzed with the satellite roll maneuver according to the payload operation concept. In addition, the data transmission to the Korea Ground Station during eclipse is investigated at the local-time-ascending-node of 11:00 AM to assess the greatest battery depth-of-discharge in normal operation.

Peak-to-Average Power Ratio Reduction of OFDM Signals Using Evolutionary Techniques

  • Pantos, George D.;Karamalis, Panagiotis D.;Constantinou, Philip
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.233-238
    • /
    • 2008
  • In this paper, the application of genetic algorithms (GAs) for orthogonal frequency division multiplexing (OFDM) signal peak-to-average power ratio (PAPR) reduction is investigated. A GA is applied in order to enhance the performance of some known techniques for OFDM PAPR reduction and the potential benefits are analyzed. Using the proposed techniques, the system designer can take advantage of the GA versatility, robustness, and adaptability to specific system requirements, in order to achieve a convenient trade-off between effectiveness and computational burden.

Stress Index Development for Piping with Trunnion Attachment Under Pressure and Moment Loadings

  • Lee, Dae-hee;Kim, Jong-Min;Park, Sung-ho
    • Nuclear Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.310-319
    • /
    • 1997
  • A finite element analysis of a trunnion pipe anchor is presented. The structure is analyzed for the case of internal pressure and moment loadings. The stress results are categorized into the average (membrane) stress, the linearly varying (bending) stress and the peak stress through the thickness. The resulting stresses are interpreted per Section III of the ASME Boiler and Pressure Vessel Code from which the Primary(B$_1$), Secondary(C$_1$) and Peak(K$_1$) stress indices for pressure, the Primary (B$_2$), Secondary(C$_2$) and Peak(K$_2$) stress indices for moment are developed. Based on the comparison between stress value by stress indices derived in this paper and stress value represented by the ASME Code Case N-391-1, the empirical equations for stress indices are effectively used in the piping stress analysis. Therefore, the use of empirical equations can simplify the procedure of evaluating the local stress in the piping design stage.

  • PDF

Study on the pulse current control of the inverter TIG welder (인버터 TIG 용접기의 펄스전류 제어에 관한 연구)

  • 서문준;김규식;원충연;민명식;최규하;목형수
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.154-157
    • /
    • 1998
  • In this paper, the inverter TIG(Tungsten Inert Gas) welding system with high power efficiency by means of pulse current control of welding process is presented. In TIG welding, pulse current control is utilized in order to attain less apatter and high welding performance. The four factors which determine the welding performance of the pulse current are frequency, base current, peak current, and peak current duty current, and peak current duty ratio. In this paper, we analyze these factors should be controlled to achieve minimum power input. To demonstrate the practical significance of our results, we present some experimental results as well as simulation results.

  • PDF

AC-DC Converter for Electrolytic Capacitor-less LED Driver with Reduced LED Peak Current (LED 구동전류의 피크값이 저감된 전해 커패시터 없는 AC-DC 컨버터)

  • Kang, Kyoung-Suk;Park, Gwon-Sik;Seo, Byung-Jun;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.59-65
    • /
    • 2018
  • A new single-stage flyback power converter with PFC for electrolytic capacitor-less LED driver is proposed in this study. This method minimizes the peak-to-average ratio of the LED driving pulsating current by adding the LED driving current near the LED current valley area, as well as the third harmonic component injection into the input current. The reduced peak current value of the LED drive current minimizes the thermal stress of the LED itself, thereby increasing the reliability of the LED, as well as achieving a long lifetime. Simulation and experimental results show the usefulness of the proposed topology.

Pilot Tone Design for PAPR Reduction in OFDM Systems Based on Compressed Channel Sensing (압축 채널 센싱 기반 OFDM 시스템에서 PAPR 감소를 위한 파일럿 톤 설계 방법)

  • Jang, Min-Ho;Kim, Kee-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.5
    • /
    • pp.806-808
    • /
    • 2015
  • In this paper, we suggest the method of pilot tone design for a compressed channel sensing in order to decrease the peak to average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems.

Reducing the PAPR of OFDM Systems by Random Variable Transformation

  • Taher, Montadar Abas;Singh, Mandeep Jit;Ismail, Mahamod Bin;Samad, Salina Abdul;Islam, Mohammad Tariqul
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.714-717
    • /
    • 2013
  • Peak power reduction techniques in orthogonal frequency division multiplexing (OFDM) has been an important subject for many researchers for over 20 years. In this letter, we propose a side-information-free technique that is based on the concept of random variable (RV) transformation. The suggested method transforms RVs into other RVs, aiming to reshape the constellation that will consequently produce OFDM symbols with a reduced peak-to-average power ratio. The proposed method has no limitation on the mapping type or the mapping order and has no significant effect on the bit error rate performance compared to other methods presented in the literature. Additionally, the computational complexity does not increase.

Development of High Flux Metal Ion Plasma Source for the Ion Implantation and Deposition

  • Kim, Do-Yun;Lee, Eui-Wan
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.7 no.2
    • /
    • pp.45-56
    • /
    • 2003
  • A high flux metal plasma pulse ion source, which can simultaneously perform ion implantation and deposition, was developed and tested to evaluate its performance using the prototype. Flux of ion source was measured to be 5 A and bi-polar pulse power supply with a peak voltage of 250 V, repetition of 20 Hz and width of 100 ${\mu}\textrm{s}$ has an output current of 2 kA and average power of 2 kW. Trigger power supply is a high voltage pulse generator producing a peak voltage of 12 kV, peak current of 50 A and repetition rate of 20 Hz. The acceleration column for providing target energy up to ion implantation is carefully designed and compatible with UHV (ultra high vacuum) application. Prototype systems including various ion sources are fabricated for the performance test in the vacuum and evaluated to be more competitive than the existing equipments through repeated deposition experiments.

  • PDF