• Title/Summary/Keyword: peak ground velocity

Search Result 146, Processing Time 0.029 seconds

Coupled analysis for the influence of blasting-induced vibration on adjacent dam (발파하중이 인접 댐에 미치는 진동영향에 대한 연계해석적 검토)

  • Park, Inn-Joon;Kim, Sung-In;Nam, Kee-Chun;Kwak, Chang-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.1
    • /
    • pp.41-50
    • /
    • 2004
  • The numerical investigation for the effects of blasting-induced vibration on adjacent dam and pore water pressure fluctuation was conducted through solid-water coupled analysis under dynamic loading. The stability of dam was examined by peak particle velocity of core. Pore water pressure distributions were calculated by steady state flow analysis using coupled analysis on ground water and blasting-induced vibration. The influence of pore water pressure and the effective stress distribution in the ground were also investigated. Furthermore, effective stress alteration was examined by applying Finn & Byrne Model to monitor the generation and dissipation of pore water pressure.

  • PDF

The Vibration Velocity and Vibration Level of Near-field Blasting Vibration in an Urban Blasting Site (근접장 발파진동에서 진동속도와 진동레벨의 비교)

  • Lee, Yeon-Soo;Chang, Seo-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.918-923
    • /
    • 2005
  • The vibration level (dB(V)) and vibration velocity (cm/sec) on the ground and buildings due to the differences of the measuring sites from the blasting source was investigated. To compare with vibration level and vibration velocity theirs magnitude was not surely directly proportional and vibration velocity 0.1 cm/sec was $45\~50$ dB(V). The difference between the measured vibration level and the calculated vibration level by Ejima's equation using vibration velocity PVS(peak vector sum) showed $21.0\~30.9$ dB(V) on the ground, $15.3\~23.6$ dB(V) on the apartment, respectively. And the correlation of vibration velocity and nitration level at the measuring sites of lower altitude showed higher than that of higher altitude.

Seismic Response Evaluation of Waste Landfills (쓰레기 매립지반의 지진거동 평가)

  • 김기태;이지호;장연수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.767-772
    • /
    • 2002
  • Free-field ground motion during earthquake is significantly affected by the local site conditions and it is essential in the seismic design to perform the accurate site-specific ground response analysis. In this paper, one-dimensional seismic characteristics of waste landfill are studied based on the vertical propagation of horizontal shear waves through the column of soil/waste. Seismic response analysis is peformed for short-period, long-period and artificial earthquake ground motions using a computer program for seismic response analysis of horizontally layered soil deposits. The computed peak ground accelerations are compared with the values calculated according to Korean seismic design guidelines. The analysis result shows that the long-period earthquake causes the largest peak ground acceleration while the artificial earthquake results in the smallest one.

  • PDF

Conversion Formula from Peak Particle Velocity to Vibration Level and Some Inappropriate Cases (발파 진동속도의 진동레벨 환산과 적용 오류 사례)

  • Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.33 no.1
    • /
    • pp.21-26
    • /
    • 2015
  • Several conversion formulas to convert peak particle velocity to vibration label were studied for their validity and applied to environmental dispute cases. Special cases like structural damage by blast vibration was accepted while mental damage was not accepted were discussed. Results show that inadequate formula was used or construction damage caused by subsidence or disturbance of ground were misidentified as vibration damage for some cases.

The Relationship between Anthropometric Parameters of the Foot and Kinetic Variables during Running (달리기 시 발의 인체측정학적 변인과 운동역학적 변인의 관계)

  • Lee, Young Seong;Ryu, Jiseon
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.3
    • /
    • pp.173-183
    • /
    • 2019
  • Objective: The aim of this study was to investigate the correlation coefficients between anthropometric parameters of the foot and kinetic variables during running. Method: This study was conducted on 21 healthy young adults (age: $24.8{\pm}2.1yes$, height: $177.2{\pm}5.8cm$, body mass: $73.3{\pm}7.3kg$, foot length: $256.5{\pm}12.3mm$) with normal foot type and heel strike running. To measure the anthropometric parameters, radiographs were taken on the frontal and sagittal planes, and determined the length and width of each segment and the navicular height. Barefoot running was performed at a preferred velocity ($3.0{\pm}0.2m/s$) and a fixed velocity (4.0 m/s) on treadmill (Bertec, USA) in order to measure the kinetic variables. The vertical impact peak force, the vertical active peak force, the braking peak force, the propulsion peak force, the vertical force at mid-stance (vertical ground reaction when the foot is fully landed in mid-stance or at the point where the weight was uniformly distributed on the foot) and the impact loading rate were calculated. Pearson's correlation coefficient was used to investigate the relationship between anthropometric variables and kinetical variables. The significance level was set to ${\alpha}=.05$. Results: At the preferred velocity running, the runner with longer forefoot had lower active force (r=-.448, p=.041) than the runner with short forefoot. At the fixed velocity, as the navicular height increases, the vertical force at full landing moment increases (r= .671, p= .001) and as the rearfoot length increases, the impact loading rate decreases (r=- .469, p= .032). Conclusion: There was a statistically significant difference in the length of fore-foot and rearfoot, and navicular height. Therefore it was conclude that anthropometric properties need to be considered in the foot study. It was expected that the relationship between anthropometric parameters and kinetical variables of foot during running can be used as scientific criteria and data in various fields including performance, injury and equipment development.

Peak floor acceleration prediction using spectral shape: Comparison between acceleration and velocity

  • Torres, Jose I.;Bojorquez, Eden;Chavez, Robespierre;Bojorquez, Juan;Reyes-Salazar, Alfredo;Baca, Victor;Valenzuela, Federico;Carvajal, Joel;Payaan, Omar;Leal, Martin
    • Earthquakes and Structures
    • /
    • v.21 no.5
    • /
    • pp.551-562
    • /
    • 2021
  • In this study, the generalized intensity measure (IM) named INpg is analyzed. The recently proposed proxy of the spectral shape named Npg is the base of this intensity measure, which is similar to the traditional Np based on the spectral shape in terms of pseudo-acceleration; however, in this case the new generalized intensity measure can be defined through other types of spectral shapes such as those obtained with velocity, displacement, input energy, inelastic parameters and so on. It is shown that this IM is able to increase the efficiency in the prediction of nonlinear behavior of structures subjected to earthquake ground motions. For this work, the efficiency of two particular cases (based on acceleration and velocity) of the generalized INpg to predict the peak floor acceleration demands on steel frames under 30 earthquake ground motions with respect to the traditional spectral acceleration at first mode of vibration Sa(T1) is compared. Additionally, a 3D reinforced concrete building and an irregular steel frame is used as a basis for comparison. It is concluded that the use of velocity and acceleration spectral shape increase the efficiency to predict peak floor accelerations in comparison with the traditional and most used around the world spectral acceleration at first mode of vibration.

Seismic Fragility Curves for Multi-Span Concrete Bridges (다경간 콘크리트 교량의 지진 취약도)

  • Kim, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.35-47
    • /
    • 2003
  • Seismic ground motion can vary significantly over distances comparable to the length of a majority of highway bridges on multiple supports. This paper presents results of fragility analysis of two actual highway bridges under ground motion with spatial variation. Ground motion time histories are artificially generated with different amplitudes, phases, as well as frequency contents at different support locations. Monte Carlo simulation is performed to study dynamic responses of the bridges under these ground motions. The effect of spatial variation on the seismic response is systematically examined and the resulting fragility curves are compared with those under identical support ground motion. This study shows that ductility demands for the bridge columns can be underestimated if the bridge is analyzed using identical support ground motions rather than differential support ground motions. Fragility curves are developed as functions of different measures of ground motion intensity including peak ground acceleration(PGA), peak ground velocity(PGV), spectral acceleration(SA), spectral velocity(SV) and spectral intensity(SI). This study represents a first attempt to develop fragility curves under spatially varying ground motion and provides information useful for improvement of the current seismic design codes so as to account for the effects of spatial variation in the seismic design of long-span bridges.

Characteristic Comparison of Ground Reaction Force of the Taekwondo's Apkubi Motion and the Walking on Older Persons (고령자의 태권도 앞굽이서기 운동과 보행의 지면반력 특성비교)

  • Bae, Young-Sang;Kim, Ki-Man
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.3
    • /
    • pp.289-296
    • /
    • 2011
  • The purpose of this study was to quantify the biomechanical characteristics of the ground reaction force(GRF) during the Taekwondo's Apkubi, one of the basic movement in Taekwondo and the walking. The GRF profiles under the stance foot of Apkubi movement and walking were directly measured in sample of 20 healthy older persons. In the anterior-posterior and vertical direction, the GRF of the Apkubi movement reached to the peak braking force at 10% of the normalized stance time percent and the peak driving force at 90% of stance time, but that of the walking reached to the peak braking force at 20% of stance time and the peak driving force at 80% of stance time. In vertical force, the GRF of the walking showed two peak values, but that of the Apkubi movement seemed three peak values. Moreover the first peak vertical force was significantly(t=6.085, p<.001) greater in the walking(about 1.8 times of body weight) than the Apkubi(about 1.4 times of body weight). The walking velocity was affected significantly(over p<.05) by the braking impulse, the peak braking force and the first peak vertical force. Futhermore the peak braking force in the Apkubi showed a significant effect on the Apkubi's stride length(p<.01). So, we concluded that the braking force after the right touch down, the stance foot on the ground contributed to move the leg forward.

A Study on the Vibration Reduction of Borehole by the Receive Distance (수진 거리에 따른 방진구의 진동 저감 연구)

  • Song, Jeong-Un;Kim, Seung-Kon;Hong, Woong-Ki
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.3
    • /
    • pp.169-176
    • /
    • 2014
  • The purpose of this study is to estimate the vibration reduction effect of the borehole which is controlled the vibration propagation in the ground. For this study, we measured the vibration velocity before and after the borehole installation. The results are as follows: The peak particle velocity(PPV) and peak vector sum(PVS) was reduced by the borehole. And also, the deviation of vibration velocity before and after the borehole installation showed large values in longitudinal and vertical component depending on the receive distance, and increased depending on the size of vibration energy. Finally, the vibration isolation efficiency was 25~35 percentage at 1.5m receive distance, and was 4~14 percentage at 3.0m receive distance. It was found that the vibration isolation efficiency was good in small vibration energy, but was not good at long receive distance.

Real-time seismic structural response prediction system based on support vector machine

  • Lin, Kuang Yi;Lin, Tzu Kang;Lin, Yo
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.163-170
    • /
    • 2020
  • Floor acceleration plays a major role in the seismic design of nonstructural components and equipment supported by structures. Large floor acceleration may cause structural damage to or even collapse of buildings. For precision instruments in high-tech factories, even small floor accelerations can cause considerable damage in this study. Six P-wave parameters, namely the peak measurement of acceleration, peak measurement of velocity, peak measurement of displacement, effective predominant period, integral of squared velocity, and cumulative absolute velocity, were estimated from the first 3 s of a vertical ground acceleration time history. Subsequently, a new predictive algorithm was developed, which utilizes the aforementioned parameters with the floor height and fundamental period of the structure as the new inputs of a support vector regression model. Representative earthquakes, which were recorded by the Structure Strong Earthquake Monitoring System of the Central Weather Bureau in Taiwan from 1992 to 2016, were used to construct the support vector regression model for predicting the peak floor acceleration (PFA) of each floor. The results indicated that the accuracy of the predicted PFA, which was defined as a PFA within a one-level difference from the measured PFA on Taiwan's seismic intensity scale, was 96.96%. The proposed system can be integrated into the existing earthquake early warning system to provide complete protection to life and the economy.