• 제목/요약/키워드: peak ground acceleration

Search Result 292, Processing Time 0.021 seconds

Criterion for judging seismic failure of suspen-domes based on strain energy density

  • Zhang, Ming;Parke, Gerry;Tian, Shixuan;Huang, Yanxia;Zhou, Guangchun
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.123-132
    • /
    • 2018
  • In this paper the strain energy density (SED) model is used to analyze the seismic behavior of suspen-domes and a new criterion is established for judging the seismic failure based on a characteristic point in the SED model. Firstly, a nonlinear time-history response analysis was carried out using the finite-element package ANSYS for typical suspen-domes subjected to different ground motions. The seismic responses including nodal displacements, ratios of yielding members, strain energy density and structural maximum deformation energy were extracted corresponding to the increasing peak ground acceleration (A). Secondly, the SED sum ($I_d$) was calculated which revealed that the $I_d-A$ curve exhibited a relatively large change (called a characteristic point) at a certain value of A with a very small load increment after the structures entered the elastic-plastic state. Thirdly, a SED criterion is proposed to judge the seismic failure load based on the characteristic point. Subsequently, the case study verifies the characteristic point and the proposed SED criterion. Finally, this paper describes the unity and application of the SED criterion. The SED method may open a new way for structural appraisal and the SED criterion might give a unified criterion for predicting the failure loads of various structures subjected to dynamic loads.

Peak ground acceleration attenuation relationship for Mazandaran province using GEP algorithm

  • Ahangari, Hamed Taleshi;Jahani, Ehsan;Kashir, Zahra
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.403-410
    • /
    • 2018
  • The choice of attenuation relationships is one of the most important parts of seismic hazard analysis as using a different attenuation relationship will cause significant differences in the final result, particularly in near distances. This problem is responsible for huge sensibilities of attenuation relationships which are used in seismic hazard analysis. For achieving this goal, attenuation relationships require a good compatibility with the target region. Many researchers have put substantial efforts in their studies of strong ground motion predictions, and each of them had an influence on the progress of attenuation relationships. In this study, two attenuation relationships are presented using seismic data of Mazandaran province in the north of Iran by Genetic Expression Programming (GEP) algorithm. Two site classifications of soil and rock were considered regarding the shear wave velocity of top 30 meters of site. The quantity of primary data was 93 records; 63 of them were recorded on rock and 30 of them recorded on soil. Due to the shortage of records, a regression technique had been used for increasing them. Through using this technique, 693 data had been created; 178 data for soil and 515 data for rock conditions. The Results of this study show the observed PGA values in the region have high correlation coefficients with the predicted values and can be used in seismic hazard analysis studies in the region.

Shake table tests on a non-seismically detailed RC frame structure

  • Sharma, Akanshu;Reddy, G.R.;Vaze, K.K.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.1-24
    • /
    • 2012
  • A reinforced concrete (RC) framed structure detailed according to non-seismic detailing provisions as per Indian Standard was tested on shake table under dynamic loads. The structure had 3 main storeys and an additional storey to simulate the footing to plinth level. In plan the structure was symmetric with 2 bays in each direction. In order to optimize the information obtained from the tests, tests were planned in three different stages. In the first stage, tests were done with masonry infill panels in one direction to obtain information on the stiffness increase due to addition of infill panels. In second stage, the infills were removed and tests were conducted on the structure without and with tuned liquid dampers (TLD) on the roof of the structure to investigate the effect of TLD on seismic response of the structure. In the third stage, tests were conducted on bare frame structure under biaxial time histories with gradually increasing peak ground acceleration (PGA) till failure. The simulated earthquakes represented low, moderate and severe seismic ground motions. The effects of masonry infill panels on dynamic characteristics of the structure, effectiveness of TLD in reducing the seismic response of structure and the failure patterns of non-seismically detailed structures, are clearly brought out. Details of design and similitude are also discussed.

Fragility assessment of shear walls coupled with buckling restrained braces subjected to near-field earthquakes

  • Beiraghi, Hamid
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.389-402
    • /
    • 2019
  • Reinforced concrete walls and buckling restrained braces are effective structural elements that are used to resist seismic loads. In this paper, the behavior of the reinforced concrete walls coupled with buckling restrained braces is investigated. In such a system, there is not any conventional reinforced concrete coupling beam. The coupling action is provided only by buckling restrained braces that dissipate energy and also cause coupling forces in the wall piers. The studied structures are 10-, 20- and 30-story ones designed according to the ASCE, ACI-318 and AISC codes. Wall nonlinear model is then prepared using the fiber elements in PERFORM-3D software. The responses of the systems subjected to the forward directivity near-fault (NF) and ordinary far-fault (FF) ground motions at maximum considered earthquake (MCE) level are studied. The seismic responses of the structures corresponding to the inter-story drift demand, curvature ductility of wall piers, and coupling ratio of the walls are compared. On average, the results show that the inter-story drift ratio for the examined systems subjected to the far-fault events at MCE level is less than allowable value of 3%. Besides, incremental dynamic analysis is used to examine the considered systems. Results of studied systems show that, the taller the structures, the higher the probability of their collapse. Also, for a certain peak ground acceleration of 1 g, the probability of collapse under NF records is more than twice this probability under FF records.

Evaluation of Seismic Fragility of Concrete Faced Rockfill Dam (콘크리트 표면차수벽형 석괴댐의 지진 취약도 평가)

  • Baeg, Jongmin;Park, Duhee;Yoon, Jinam;Choi, Byoung-Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.103-108
    • /
    • 2018
  • The fragility curves for CFRD dams are derived in this study for probabilistic damage estimation as a function of a ground motion intensity. The dam crest settlement, which is a widely used damage index, is used for minor, moderate, and extensive damage states. The settlement is calculated from nonlinear dynamic numerical simulations. The accuracy of the numerical model is validated through comparison with a centrifuge test. The fragility curve is represented as a log normal distribution function and presented as a function of the peak ground acceleration. The fragility curves developed in this study can be utilized for real time assessment of the damage of dams.

Seismic fragility analysis of sliding artifacts in nonlinear artifact-showcase-museum systems

  • Liu, Pei;Li, Zhi-Hao;Yang, Wei-Guo
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.333-350
    • /
    • 2021
  • Motivated by the demand of seismic protection of museum collections and development of performance-based seismic design guidelines, this paper investigates the seismic fragility of sliding artifacts based on incremental dynamic analysis and three-dimensional finite element model of the artifact-showcase-museum system considering nonlinear behavior of the structure and contact interfaces. Different intensity measures (IMs) for seismic fragility assessment of sliding artifacts are compared. The fragility curves of the sliding artifacts in both freestanding and restrained showcases placed on different floors of a four-story reinforced concrete frame structure are developed. The seismic sliding fragility of the artifacts within a real-world museum subjected to bi-directional horizontal ground motions is also assessed using the proposed IM and engineering demand parameter. Results show that the peak floor acceleration including only values initiating sliding is an efficient IM. Moreover, the sliding fragility estimate for the artifact in the restrained showcase increases as the floor level goes higher, while it may not be true in the freestanding showcase. Furthermore, the artifact is more prone to sliding failure in the restrained showcase than the freestanding showcase. In addition, the artifact has slightly worse sliding performance subjected to bi-directional motions than major-component motions.

Seismic fragility analysis of base isolation reinforced concrete structure building considering performance - a case study for Indonesia

  • Faiz Sulthan;Matsutaro Seki
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.3
    • /
    • pp.243-260
    • /
    • 2023
  • Indonesia has had seismic codes for earthquake-resistant structures designs since 1970 and has been updated five times to the latest in 2019. In updating the Indonesian seismic codes, seismic hazard maps for design also update, and there are changes to the Peak Ground Acceleration (PGA). Indonesian seismic design uses the concept of building performance levels consisting of Immediate occupancy (IO), Life Safety (LS), and Collapse Prevention (CP). Related to this performance level, cases still found that buildings were damaged more than their performance targets after the earthquake. Based on the above issues, this study aims to analyze the performance of base isolation design on existing target buildings and analyze the seismic fragility for a case study in Indonesia. The target building is a prototype design 8-story medium-rise residential building using the reinforced concrete moment frame structure. Seismic fragility analysis uses Incremental Dynamic Analysis (IDA) with Nonlinear Time History Analysis (NLTHA) and eleven selected ground motions based on soil classification, magnitude, fault distance, and earthquake source mechanism. The comparison result of IDA shows a trend of significant performance improvement, with the same performance level target and risk category, the base isolation structure can be used at 1.46-3.20 times higher PGA than the fixed base structure. Then the fragility analysis results show that the fixed base structure has a safety margin of 30% and a base isolation structure of 62.5% from the PGA design. This result is useful for assessing existing buildings or considering a new building's performance.

Study on Mapping Methodof Liquefaction hazard Potential in Korea (국내의 액상화 구역도 작성 기법에 관한 연구)

  • 강규진
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.141-150
    • /
    • 2000
  • In this study liquefaction hazard potential was assessed by modified Seed and Idriss method and maps of liquefaction hazard potential utilized by LPI(Liquefaction Potential Index) and FE(Equivalent Liquefaction Factor of Safety) were constructed in two dimensional space, Comparisons of liquefaction hazard maps assessed by LPI and FE are represented to verify the FE method proposed in this study. Based on the results of comparing liquefaction hazard map using LPI and FE there is similar distribution trend of zonation indices. from the result of comparison of liquefaction hazard maps of FE base using Hachinohe and ofunato PGA(Peak ground Acceleration) data at one site of port and harbor in Korea the values of FE in liquefaction hazard map using Hachinohe data are underestimated. And in the view of quantitative analysis FE is more convenient than LPI because types of results from FE are factor of safety that widely used in geotechnical practice and aseismic design standard for port and harbor in Korea.

  • PDF

A review of seismic design recommendations in Jordan

  • Saffarini, Hassan S.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.3
    • /
    • pp.257-268
    • /
    • 2000
  • The seismic design recommendations of the Jordan Code for Loads and Forces (JC) are evaluated, based on comparisons with analytical studies and the Uniform Building Code. It was established that the overall safety ensured by the implementation of these recommendations is not consistent with the established seismic risk in Jordan and the intended objectives of the code. A new zoning map is proposed with effective peak ground acceleration values. The different period formulae of the code were studied and were found to grossly underestimate the fundamental period when compared with analytically derived values or other codes' formulae. Other factors including the dynamic, soil, importance and behavior factors are discussed. It was determined that the JC's lateral load distribution formulae clearly lead to smaller internal forces than both dynamic analysis and UBC loads, even when those loads are normalized to give the same base shear. The main reason for this is attributed to the limited allowance for a backlash force in the JC.

Seismic Landslide Hazard Maps Based on Factor of Safety and Critical Displacements of Slope (사면의 안전율과 임계변위에 의한 지진 재해 위험지도의 비교)

  • 정의송;조성원;김명모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.509-516
    • /
    • 2001
  • As the first step for the application of seismic landslide hazard maps to domestic cases, two types of hazard maps on Ul-joo from pseudostatic analysis and Newmark sliding block analysis are constructed and comllared. Arcview, the GIS program and the 1:5,000 digital maps of the test-site are used for the construction of hazard maps and tile parameters for the analyses are determined by seismic survey and laboratory tests. The results from the pseudostatic analysis have more conservative values of lower critical slope angles, although the results from the two different analyses have similar tendencies. In detail, with increasing the peak ground acceleration, the difference between the two analyses in the critical slope angle increases, while the difference decreases with increasing the maximum soil depth.

  • PDF