• Title/Summary/Keyword: peak friction angle

Search Result 59, Processing Time 0.022 seconds

An Experimental Study of Strength Evaluation in Frozen Soils according to Direct Shear Box Systems (직접전단상자 시스템에 따른 동결토의 강도 평가에 관한 실험적 연구)

  • Kim, Sang Yeob;Kim, YoungSeok;Lee, Jangguen;Lee, Jong-Sub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.3
    • /
    • pp.5-14
    • /
    • 2017
  • Experimental study on strength characteristics of frozen soils is necessary for the safety evaluation of design and construction in cold region. The objective of this study is to evaluate the direct shear strength of frozen soils obtained from traditional system (Type-1), system with roller on the upper shear box (Type-2), and system with fixed upper shear box separated from bottom shear box (Type-3). Specimens mixed with sand, silt, and water are frozen to $-5^{\circ}C$, and then direct shear tests are conducted under the normal stress of 5, 10, 25, and 50 kPa. Experimental results show that the upper shear box of Type-1 touches the bottom shear box due to the rotation of the upper shear box. The shear strength obtained from Type-2 is overestimated because the preventing rotation force is added to shear force. Type-3 may acquire the only strength of the specimen, and shear strain at peak shear strength is similar to that at the beginning of vertical displacement occurrence. In addition, internal friction angle and cohesion at both peak and residual stresses in Type-3 are smaller than those of Type-2. This study shows that high strength specimens including frozen soils can be effectively evaluated using improved shear box system such as Type-3.

Study on the mechanical properties test and constitutive model of rock salt

  • Zhao, Baoyun;Huang, Tianzhu;Liu, Dongyan;Liu, Yang;Wang, Xiaoping;Liu, Shu;Yu, Guibao
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.291-298
    • /
    • 2019
  • In order to study the mechanical properties of rock salt, triaxial compression tests under different temperatures and confining pressure are carried out on rock salt specimens, the influence of temperature and confining pressure on the mechanical properties of rock salt was studied. The results show that the temperature has a deteriorative effect on the mechanical properties of rock salt. With the increase of temperature, the peak stress of rock salt decreases visibly; the plastic deformation characteristics become much obvious; the internal friction angle increases; while the cohesion strength decreases. With the increase of confining pressure, the peak stress and peak strain of rock salt will increase under the same temperature. Based on the test data, the Duncan-Chang constitutive model was modified, and the modified Duncan-Chang rock salt constitutive model considering the effect of temperature and confining pressure was established. The stress-strain curve calculated by the modified model was compared with the stress-strain curve obtained from the test. The close match between the test results and the model prediction suggests that the modified Duncan-Chang constitutive model is accurate in describing the behavior of rock slat under different confining pressure and temperature conditions.

Prediction of Tensile Strength of Wet Sand (I) : Theory (습윤 모래에서 인장강도의 예측 (I) : 이론)

  • Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.27-35
    • /
    • 2008
  • At low normal stress levels tensile strength of sand varies with either saturation or suction of soil in an up-and-down manner with a peak tensile strength that can occur at any degree of saturation. A theory that accurately predicts tensile strength of wet sand is presented. A closed form expression for tensile strength unifies tensile strength characteristics in all three water retention regimes: pendular, funicular, and capillary. Three parameters are employed in the theory; namely, the Internal friction angle (at low normal stress) ${\phi}_t$, the inverse value of the air-entry pressure ${\alpha}$, and the pore size spectrum parameter n. It is shown that the magnitude of peak tensile strength is dominantly controlled by the ${\alpha}$ parameter. The saturation at which peak tensile strength occurs only depends on the pore size spectrum parameter n.

Improvement of Rotary Tine for Barley Seeder Attached to Rotary Tiller (로우터리 맥류파종기 경운날의 개량시험)

  • 김성래;김문규;김기대;허윤근
    • Journal of Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-23
    • /
    • 1979
  • The use of barley seeder attached to rotary tiller in the rural area has a significant meaning not only for the solution of labor peak season, but also for the increase of land utilization efficiency. The facts that presently being used barley seeders are all based on the mechanical principles of the reverse rotation, center drive and are all using forward rotating tine, which is used to be easily and heavily worn out when it rotates reversely, raise problem of recommending them to rural area in Korea. Therefore, the main objective of the study was to develop new type of rotary tine attachable to barley seeders. To attain the objective the following approaches were applied. (1) The kinematic analysis of reverse rotating barley seeders. (2) The studies on the soil bin and artificial soil. (3) The comparative experiment on the power requirement of prototype tine. The results obtained from the studies are summarized as follow: 1. The kinematic analysis of barley seeder attached to rotary tiller: The following results were obtained from the kinematic analysis for deriving general formulae of the motion and velocity characterizing the rotary tine of barley seeders presently being used by farmers. a) The position vector (P) of edge point (P) in the rotary tine of reverse rotating, center drive was obtained by the following formula. $$P=(vt+Rcos wt)i+Rsin wt j+ \{ Rcos \theta r sin \alpha cos (wt- \beta +\theta r) +Rsin \theta r sin \alpha sin (wt-\beta + \theta r) \} lk $$ b) The velocity of edge point $(P^')$ of reverse rotating, center drive rotary tine was obtained by the following formula. $$(P^')=(V-wR sin wt)i+(w\cdot Rcoswt)j + \{ -w\cdot Rcos \theta r\cdot sin \alpha \cdot sin (wt-\beta +\theta r) + w\cdot Rsin \theta r\cdot sin \alpha \cdot cos (wt- \beta + \theta r \} k $$ c) In order to reduce the power requirement of rotary tine, the angle between holder and edge point was desired to be reduced. d) In order to reduce the power requirement, the edge point of rotary tine should be moved from the angle at the begining of cutting to center line of machine, and the additional cutting width should be also reduced. 2. The studies on the soil bin and artificial soil: In order to measure the power requirement of various cutting tines under the same physical condition of soil, the indoor experiments Viere conducted by filling soil bin with artificially made soil similar to the common paddy soil and the results were as follows: a) When the rolling frequencies$(x)$ of the artificial soil were increased, the densIty$(Y)$ was also increased as follows: $$y=1.073200 +0.070780x - 0.002263x^2 (g/cm^3)$$ b) The absolute hardness $(Y)$ of soil had following relationship with the rolling frequencies$(x)$ and were increased as the rolling frequencies were increased. $$Y=37.74 - \frac {0.64 + 0.17x-0. 0054x^2} {(3.36-0.17x + 0.0054x^2)^3} (kg/cm^3)$$ c) The density of soil had significant effect on the cohesion and angle of internal friction of soil. For instance, the soil with density of 1.6 to 1.75 had equivalent density of sandy loam soil with 29.5% of natural soil moisture content. d) The coefficient of kinetiic friction of iron plate on artificial soil was 0.31 to 0.41 and was comparable with that of the natural soil. e) When the pulling speed of soil bin was the 2nd forward speed of power tiller, the rpm of driving shaft of rotary was similar to that of power tiller, soil bin apparatus is indicating the good indoor tester. 3. The comparative experiment on the power requirement of prototype tine of reverse rotating rotary: According to the preliminary test of rotary tine developed with various degrees of angle between holder and edge pcint due to the kinematic analysis, comparative test between prototype rotary tine with $30 ^\circ $ and $10 ^\circ$ of it and presently being used rotary tine was carried out 2nd the results were as follows: a) The total cutting torque was low when the angle between holder and edge point was reduced. b) $\theta r$ (angle between holder and edge point) of rotary tine seemed to be one: of the factors maximizing the increase of torque. c) As the angle between holder and edge point ($\theta r$) of rotary tine was $30 ^\circ $ rather than $45 ^\circ $, the angle of rotation during cutting soil was reduced and the total cutting torque was accordingly reduced about 10%, and the reduction efficiency of total cutting torque was low when the angle between holder and edge point ($\theta r$) of rotary tine was $10 ^\circ $, which indicates that the proper angle between holder and edge point of rotary tine should be larger than $10 ^\circ $ and smaller than $30 ^\circ $ . From above results, it could be concluded that the use of the prototype rotary tine which reduced the angle between holder and edge point to $30 ^\circ $, insted of $45 ^\circ $, is disirable not only decreasing the power requirements, but also increasing the durabie hour of it. Also forward researches are needed, WIlich determine the optimum tilted angle of rotary brocket, and rearrangement of the rotary tine on the rotary boss.

  • PDF

Friction Characteristics on Interface Between Reinforcement and Sand by Direct Shear Test Methods (전단시험방법에 따른 토목섬유/모래 접촉면에서의 마찰특성)

  • Ju, Jae-Woo;Park, Jong-Beom;Chang, Yong-Chai
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.1
    • /
    • pp.39-45
    • /
    • 2003
  • The most important part in the earth reinforcement is the interface between soil and the reinforcement. Shear strength and shear behavior in this interface make a great role relating to the reinforcement effect. This paper presents 2 kinds of direct shear test methods. one is the strain free shear test, called 'free method', that is performed by the free condition of allowing tensile strain. The other is the strain fix shear test, called 'fixed method', that is performed by the fixed condition of not allowing tensile strain. Two reinforcements were used such as nonwoven geotextile and geogrid. That is, interfaces are composed of geogrid/sand and geotextile/sand. From the test results it shows us that the fixed method had a greater friction angle and a smaller peak shear strain than those of the free method. Residual stress of the fixed method was bigger than that of the free method but the residual stress ratio was vice versa.

  • PDF

The Effect of Cement Milk Grouting on the Deformation Behavior of Artifcial Rock Joints (시멘트현탁액 주입에 의한 신선한 암석절리의 역학적 특성 변화)

  • 김태혁;이정인
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.180-195
    • /
    • 2000
  • Grouting has been practiced as a reliable technique to improve the mechanical properties of rock mass. But, the study of ground improvement by greeting is rare especially in jointed rock mass. In this study, joint compression test and direct shear test were performed on pure rock joint and cement milk grouted rock joint to examine the grouting effect on the property of rock joint. In the pure rock joint compression test, joint closure varied non-linearly with normal stress. But after cement milk grouting, the normal deformation characteristics of the joint was linear at the low normal stress level. As normal stress increased. deformation of the sample rapidly increased due to the stress concentration at the joint asperities. Peak shear strength of the grouted joint in low normal stress was higher than that of non-grouted joint due to the cohesion, decreased exponetially as the grout thickness increased. Thus after cement milk grouting, the failure envelope modified to a curve that has cohesion due to grout material hydration with decreased friction angle. Shear stiffness and peak dilation angle of the grouted joint decreased as the grout thickness increased. The peak shear strength from the direct shear test on grouted rock joint was represented by an empirical equation as a fuction of grout thickness and roughness mean amplitude.

  • PDF

Anisotropic Shear Strength of Artificially Fractured Rock Joints Under Low Normal Stress (낮은 수직응력 하에서 인공 절리면의 전단 이방성에 관한 연구)

  • 곽정열;이상은;임한욱
    • Tunnel and Underground Space
    • /
    • v.13 no.3
    • /
    • pp.169-179
    • /
    • 2003
  • Anisotropic shear strength of rock joints is studied based on the artificially fractured specimens using experimental and analytical methods. Series of direct shear tests are performed to obtain the strength, stiffness and friction angle of joints under various low normal stresses and shearing directions. The results of shear strength and stiffness show anisotropic value according to shearing direction under low normal stress specially less than 2.45 MPa. But, the effect of joint roughness on strength decreases with increasing normal stress. To estimate more effectively the peak shear strength under low normal stress, the modified Barton's equation is suggested.

A Study on Comparison of Finite Element Analysis with Model Test of Shallow Footing Failure for Cohesionless Soil with Non-associated Plasticity and Some Smooth Footing (사질토지반의 지지력분석을 위한 얕은기초의 파괴거동에 대한 모형실험과 유한요소해석 비교 검토)

  • Kim, Young-Min;Kang, Sung-Wi
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • This paper describes the procedure to predict the entire load-displacement curve and the failure mechanism of shallow strip footing for real soil. The presented results show that it is possible to analyze the post peak behavior of shallow strip footing and to give a progressive failure mechanism clearly. Finite element computation of the bearing capacity factor $N_{\gamma}$ have been made for shallow strip footings with friction angles and dilation angle. It is shown that commonly used values of $N_{\gamma}$ which have generally been based on associated plasticity calculations are unconservative for real soil with non-associated plasticity and some smooth footing.

  • PDF

Effect of relative density on the shear behaviour of granulated coal ash

  • Yoshimoto, Norimasa;Wu, Yang;Hyodo, Masayuki;Nakata, Yukio
    • Geomechanics and Engineering
    • /
    • v.10 no.2
    • /
    • pp.207-224
    • /
    • 2016
  • Granulated coal ash (GCA), a mixture of the by-product from milling processes with a small amount of cement added, has recently come to be used as a new form of geomaterial. The shear strength and deformation behaviours of GCA are greatly determined by its relative density or void ratio. A series of drained triaxial compression tests were performed on cylindrical specimens of GCA at confining pressures of between 50 kPa and 400 kPa at initial relative densities of 50%, 70% and 80%. Experimental results show that a rise in relative density increases the peak shear strength and intensifies the dilation behaviour. The initial tangent modulus and secant modulus of the stress-strain curve increase with increasing initial relative density, whereas the axial and volumetric strains at failure decrease with level of initial relative density. The stress-dilatancy relationships of GCA at different relative densities and confining pressures display similar tendency. The dilatancy behaviour of GCA is modelled by the Nova rule and the material property N in Nova rule of GCA is much larger than that of natural sand.

Mechanical properties and failure mechanism of gravelly soils in large scale direct shear test using DEM

  • Tu, Yiliang;Wang, Xingchi;Lan, Yuzhou;Wang, Junbao;Liao, Qian
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.27-44
    • /
    • 2022
  • Gravelly soil is a kind of special geotechnical material, which is widely used in the subgrade engineering of railway, highway and airport. Its mechanical properties are very complex, and will greatly influence the stability of subgrade engineering. To investigate the mechanical properties and failure mechanism of gravelly soils, this paper introduced and verified a new discrete element method (DEM) of gravelly soils in large scale direct shear test, which considers the actual shape and broken characteristics of gravels. Then, the stress and strain characteristics, particle interaction, particle contact force, crack development and energy conversion in gravelly soils during the shear process were analyzed using this method. Moreover, the effects of gravel content (GC) on the mechanical properties and failure characteristics were discussed. The results reveal that as GC increases, the shear stress becomes more fluctuating, the peak shear stress increases, the volumetric strain tends to dilate, the average particle contact force increases, the cumulative number of cracks increases, and the shear failure plane becomes coarser. Higher GC will change the friction angle with a trend of "stability", "increase", and "stability". Differently, it affects the cohesion with a law of "increase", "stability" and "increase".