• Title/Summary/Keyword: peak coefficient

Search Result 762, Processing Time 0.033 seconds

Relational expression of rainfall intensity by the water level fluctuate in the mountain region river of Gang won-do (강원도 산간 지역 하천을 대상으로 한 강우강도에 따른 수위 변동 관계식 작성)

  • Choi, Han-Kuy;Kong, Ji-Hyuk;Lee, Yik-Sang;Cho, Hyun-Jeung;Park, Je-Wan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.154-159
    • /
    • 2011
  • As the need for predicting the flood stage of river from torrential downpouring caused by climate change is increasingly emphasized, the study, centered on the area of Gangwon-do Inje-gun and Jeongseon-gun of local river, is to develop peak water level regression equation by rainfall. Through the correlation between rainfall and peak water level, it is confirmed that rainfall according to duration and peak water level have a high correlation coefficient. Based on this, a relational expression of rainfall and peak water level is verified and then the adequacy of the calculated expression is analyzed and the result shows that a very accurate prediction is not easy to achieve but a rough prediction of the change of water level at each point is possible.

  • PDF

A Study on the Classification of Road Type by Mixture Model (혼합모형을 이용한 도로유형분류에 관한 연구)

  • Lim, Sung Han;Heo, Tae Young;Kim, Hyun Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.759-766
    • /
    • 2008
  • Road classification system is the first step for determining the road function and design standards. Currently, roads are classified by various indices such as road location and function. In this study, we classify road using various traffic indices as well as to identify traffic characteristics for each type of road. To accomplish the objectives, mixture model was applied for classifying road and analyzing traffic characteristics using traffic data that observed at permanent traffic count stations. A total of 8 variables were applied: annual average daily traffic(AADT), $K_{30}$ coefficient, heavy vehicle proportion, day volume proportion, peak hour volume proportion, sunday coefficient, vacation coefficient, and coefficient of variation(COV). A total of 350 permanent traffic count points were categorized into three groups : Group I (Urban road), Group II (Rural road), and Group III (Recreational road). AADT were 30,000 for urban, 16,000 for rural, and 5,000 for recreational road. Group III was typical recreational road showing higher average daily traffic volume during Sunday and vacational periods. Group I showed AM peak and PM peak, while group II and group III did not show AM peak and PM peak.

Cable Fault Detection Improvement of STDR Using Reference Signal Elimination (인가신호 제거를 이용한 STDR의 케이블 고장 검출 성능 향상)

  • Jeon, Jeong-Chay;Kim, Taek-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.450-456
    • /
    • 2016
  • STDR (sequence time domain reflectometry) to detect a cable fault using a pseudo noise sequence as a reference signal, and time correlation analysis between the reference signal and reflection signal is robust to noisy environments and can detect intermittent faults including open faults and short circuits. On the other hand, if the distance of the fault location is far away or the fault type is a soft fault, attenuation of the reflected signal becomes larger; hence the correlation coefficient in the STDR becomes smaller, which makes fault detection difficult and the measurement error larger. In addition, automation of the fault location by detection of phase and peak value becomes difficult. Therefore, to improve the cable fault detection of a conventional STDR, this paper proposes the algorithm in that the peak value of the correlation coefficient of the reference signal is detected, and a peak value of the correlation coefficient of the reflected signal is then detected after removing the reference signal. The performance of the proposed method was validated experimentally in low-voltage power cables. The performance evaluation showed that the proposed method can identify whether a fault occurred more accurately and can track the fault locations better than conventional STDR despite the signal attenuation. In addition, there was no error of an automatic fault type and its location by the detection of the phase and peak value through the elimination of the reference signal and normalization of the correlation coefficient.

Field Measurement Methods of Stream Reaeration Coefficient - Modified Gas Tracer Method - (Modified Gas Tracer Method를 이용한 하천의 재폭기계수)

  • 조영준;권순국
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.547-551
    • /
    • 1998
  • Reaeration coefficient is the physical absorption of oxygen from the atmosphere by water. It is the most important natural means by which a stream replaces the oxygen consumed in the biodegradation of organic wastes, and the rate constant describing this process is the reaeration coefficient, It. Reaeration coefficient is the dominant parameter affecting the use of water quality model. Therefore accurate estimation of the reaeration coefficient is essential for optimum water quality management. There is several method to estimate stream reaeration coefficient. In this study, it would be concluded that SI-peak method is of practical use when applied to small stream, and CRI method is adequate to large stream.

  • PDF

Two dimensional flow and heat/mass transfer characteristics in rectangular wavy duct with corrugation angle (2차 유동 영역에서 꺽임각 변화에 따른 주름진 사각 덕트에서의 열/물질전달 및 유동 특성)

  • Kwon, Hyun-Goo;Hwang, Sang-Dong;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2267-2272
    • /
    • 2007
  • The present study investigates the two dimensional flow and heat/mass transfer characteristics of wavy duct with various corrugation angles. For the heat/mass transfer coefficients, a naphthalene sublimation technique is used. Numerical analysis and wall pressure measurement show detailed two dimensional flow features. The corrugation angles change from 145$^{\circ}$ to 100$^{\circ}$. The operating Reynolds numbers based on the duct hydraulic diameter vary from 700 to 3,000. The duct aspect ratio maintains 7.3. On the pressure wall, strong flow mixing enhances heat/mass transfer coefficients at the front position. In addition, the rear side of pressure wall, the near of peak, is affected by the acceleration and the shedding of main flow. On the suction wall, however, flow separation and reattachment lead to the valley and the peak of heat/mass transfer coefficient. Also, highly increasing boundary layer at the suction wall affects the decrease of heat/masst transfer. As decreasing corrugation angles, the spanwise average Sherwood number increases and the peak or the valley positions of the local Sherwood number are varied.

  • PDF

Sensitivity Analysis of Thermal Parameters Affecting the Peak Cladding Temperature of Fuel Assembly

  • Ju-Chan Lee;Doyun Kim;Seung-Hwan Yu;Sungho Ko
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.359-370
    • /
    • 2023
  • The thermal integrity of spent nuclear fuels has to be maintained during their long-term dry storage. The detailed temperature distributions of spent fuel assemblies are essential for evaluating the integrity of their dry storage systems. In this study, a subchannel analysis model was developed for a canister of a single fuel assembly using the COBRA-SFS code. The thermal parameters affecting the peak cladding temperature (PCT) of the spent fuel assembly were identified, and sensitivity analyses were performed based on these parameters. The subchannel analysis results indicated the presence of a recirculation flow, based on natural convection, between the fuel assembly and downcomer region. The sensitivity analysis of the thermal parameters indicated that the PCT was affected by the emissivity of the fuel cladding and basket, convective heat transfer coefficient, and thermal conductivity of the fluid. However, the effects of the wall friction factor of the canister, form loss coefficient of the grid spacers, and thermal conductivities of the solid materials, on the PCT were predominantly ignored.

A Comparative Study on the Methods Estimating Wave Directional Spectrum (파향스펙트럼 추정법의 비교 연구)

  • 오병철;심재설
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.3
    • /
    • pp.119-127
    • /
    • 1990
  • Wave directional spectrum estimation methods for irregular waves were considered in this study. Until now, the Longuet-Higgins Method (LHM) initiated by Longuet-Higgins et al. (1963) has been widely used, but resolutions of the estimation were found to be low. Kobune's Maximum Entropy Method (MEM) for the estimation of wave directional spectrum, bas-ed on the entropy Principle showed higher resolutions comparing with the LHM . If the wave directional spectrum is of Delta functions, the MEM is exact in its estimation. It was also found that for a unimodal spectrum, if the Mitsuyasu's spreading coefficient is above 5, the estimation resolutions were high. In bimodal spectrum, as the angle difference between the two peaks increased, the resolution improved. The energy seems to transfer to the smoother peak in the smoothing of peak's peakedness. LHM has a tendency to estimate bimodal spectrum as a unimodal spectrum ; thus, except for its computational speed, the resolution of LHM falls far below that of MEM.

  • PDF

A Study of Peak Discharge Variation by Dividing Watershed (유역분할에 따른 첨두홍수량 특성에 관한 연구)

  • Park, Ki-Bum
    • Journal of Environmental Science International
    • /
    • v.15 no.4
    • /
    • pp.365-372
    • /
    • 2006
  • In this study investigated that topographical parametersestimate and calculated travel time, storage coefficient and lag time by watershed dividing 11, 8, 6 and 2. The results showed the more divide watershed, the more increase peak discharges. The results showed that Kraven-Clark-Kraven case is good simulated by compared observed data with calculated data. The sub-basin number are adequate $6{\sim}11$ for wichun and travel times compare observed data with calculated data at the younggok, to take about $18{\sim}20hr$ by simulated results but observed data shorter $8{\sim}10hr$. From this study results showed that it could be make narrow parameter estimate for observed hydrograph simulation, if more observed velocity and hydrograph. Also, as results of this study that is help to estimate parameters (arrival time, storage coefficient and lag time for Clark model.

The Effects of Chlorination on the Friction Properties of SBR (염소화 반응조건이 SBR의 표면마찰 특성에 미치는 영향)

  • Park, Cha-Cheol;Kim, Ho-Jung
    • Fashion & Textile Research Journal
    • /
    • v.10 no.1
    • /
    • pp.101-105
    • /
    • 2008
  • This study was concerned with the influence of reaction conditions on the surface friction properties of Syrene-Butadiene Rubber(SBR) sheet when it was chlorinated by chemical treatment method using the sodium hypochlorite and sulfuric acid. The results of this study were as follows. SEM photographs of chlorinated SBR surface showed uneven etching caused by the chlorination. In the FTIR spectra, the intensity of C=C peak of SBR was decreased with increasing the concentration of sodium hypochlorite. Otherwise there was no trace of C=C peak in spectrum of SBR treated with 5 wt% NaOCl with pH 0.1 for 90 seconds. EDX spectra showed that relative content of chlorine of SBR was increased with increasing the amount of sodium hypochlorite, and also affected with pH condition of acid solution. Friction angle and friction coefficient of SBR were influenced with concentration of sodium hypochlorite, but were not with pH condition of acid solution.

Frequency Characteristics of a Membrane-Cavity System and its Applications (박막-공동계의 주파수 특성과 응용)

  • 김양한;임종민
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1123-1130
    • /
    • 1999
  • A system which is composed of a membrane and an air cavity is studied. To analyze the low frequency characteristics of a single membrane-cavity system, a plane wave model is derived. The relations among system variables, such as tension, density and stiffness, are investigated. Absorption coefficient has a maximum value at a peak frequency. In addition, a membrane-cavity system absorbs the low frequency noise with a band around peak frequency. This band is primarily determined by damping effect of the system. Furthermore, a multiple membrane-cavity system is investigated by using the transfer matrix method. To show the practical applicability of the proposed model, extensive experiments were conducted. Results show that a multiple membrane-cavity system can have broader noise reduction in the low frequency range than single.

  • PDF