• Title/Summary/Keyword: pavement smoothness

Search Result 11, Processing Time 0.022 seconds

Evaluation of Pavement Smoothness on Optimized Rehabilitated Section (최소단면 보수지역의 평탄성 평가)

  • Park, Dae-Wook;Jin, Jung-Hoon
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.123-127
    • /
    • 2010
  • In this study, the profiles of optimized rehabilitated section was measured by a lightweight inertial profiler, and pavement smoothness was evaluated. To analyze the repeatability of the used lightweight profiler, two repeatable measurements were conducted. The agreement between two repeatable measurements were evaluated by Cross-correlation function. Pavement smoothness of the optimized rehabilitated pavement section and existing area was compared in terms of International Roughness Index and Profilograh Index. In general, the pavement smoothness of the rehabilitated sections was not good compared to the existing pavement sections. The analysis results could be used for the evaluation of pavement smoothness of the optimized rehabilitated pavement sections.

ASSESSMENT OF PUBLIC PERCEIVED ROADWAY SMOOTHNESS

  • Jamie Miller;Don Chen;Neil Mastin
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.507-508
    • /
    • 2013
  • International Roughness Index (IRI) has been widely used by state DOTs to quantify pavement smoothness. When pavement condition falls below certain IRI thresholds, corresponding pavement maintenance treatments should be considered for application. Selection of appropriate IRI thresholds is essential to tactical allocation of limited resources to improve the conditions of states' roadway systems. This selection process is often challenging, however, because IRI thresholds are largely determined by Perceived Ride Quality (PRQ), and PRQ differs in each state. In this paper, a framework is proposed to address this problem. Passenger raters will be randomly selected from predetermined geographic locations, and their PRQ ratings collected. Taking this perceived ride data, along with other data collected, a statistical analysis will be conducted to establish the relationship between measured IRI values and PRQ. Appropriate IRI thresholds will then be determined. Once this framework is implemented, state DOTs could make informative maintenance decisions, which are expected to greatly enhance the public perception of pavement conditions in today's challenging economy.

  • PDF

Analysis of Concrete Flexural Strength and Surface Smoothness for Concrete Pavement Performance Based Payment Regulations (콘크리트 포장의 공용성 기반 지불규정 적용을 위한 콘크리트 휨강도 및 표면 평탄성에 관한 분석)

  • Hwang, Seong-Jae;Kim, Seong-Min;Rhee, Suk-Keun
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.95-105
    • /
    • 2009
  • This study was conducted to investigate the effects of concrete flexural strength and surface smoothness, which were pay factors of concrete pavements, on pavement performance, and to develop the methodologies to determine the proper allowable ranges according to the magnitudes of those pay factors. The concrete flexural strength was analyzed using the AASHTO, power, and linear fatigue failure models, and the surface smoothness was analyzed for the roughness indices of PSI, IRI, and PrI using the AASHTO model. The analysis results showed that the allowable range of the flexural strength should be determined using the rate between the deficiency and strength, and the penalty should be linearly proportional to the strength deficiency rate because the linear relationship between the strength deficiency rate and the reduction in pavement life was observed. As the initial surface smoothness became better, the smoothness deficiency rate should be larger. The penalty due to the surface smoothness deficiency should also be linearly proportional to the smoothness deficiency rate.

  • PDF

Variation of Moving Dynamic Vehicle Loads According to Surface Smoothness of Pavement Systems (도로포장 표면평탄성에 따른 주행차량의 동적 하중 변화 특성)

  • Kim, Seong-Min;Rhee, Suk-Keun
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.135-144
    • /
    • 2008
  • The dynamic loads imposed by moving vehicles have variations in the magnitude due to the surface roughness of the pavement systems and the larger dynamic loads than the design loads may affect the pavement performance. This paper presents variations of the moving dynamic vehicle loads due to the pavement surface roughness. This study was performed as a basic study to apply the pay factor to the surface roughness for the improvement of pavement quality and performance. The profile data was obtained from the old and new pavements and the analysis was performed to investigate the dynamic loads when vehicles move on the pavements having those profiles. The artificial profiles were also developed to find the effects of the vehicle speed, wavelength and amplitude of the surface roughness on the dynamic vehicle loads. The increase in the load magnitude due to the surface roughness affects the stresses and strains of pavements and finally reduces the pavement life. The methodology to obtain the relationship between the surface roughness and the pavement performance was proposed in this study.

  • PDF

Construction and Design Related Issues in Road Widening for Concrete Pavement (콘크리트포장 확장접속부의 시공 및 설계상의 문제점 분석)

  • Yang, Sung-Chul
    • International Journal of Highway Engineering
    • /
    • v.8 no.4 s.30
    • /
    • pp.25-36
    • /
    • 2006
  • Through field surveys and evaluation on several widened concrete pavements, issues on construction and design related problems are broken down into three categories to be discussed; poor smoothness, influence of traffic vibration on concrete curing, and poor connection to the existing pavement. There are many places where about 100mm only of the marginal strip is removed and where defects such as widening and faulting are observed. Also cracks arise again from the patched areas due to stress concentration near the joint. Roughness on the widened concrete pavement was evaluated and there are some stations where the smoothness limit is over passed. For design consideration, shortage of the required force in the tie-bar is expected in case of road widening specially from 3 lanes to 4 lanes. Finally the average pull-out force of specimens made from the current practice was about 57% of the required force. New connecting methods were suggested in this study.

  • PDF

Evaluation of Functional and Structural Performance of Semi Rigid Overlay Pavements (반강성 덧씌우기 포장의 기능적 및 구조적 성능 평가)

  • Park, Kang Yong;Lee, Jae Jun;Kwon, Soo Ahn;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3D
    • /
    • pp.271-278
    • /
    • 2010
  • Semi rigid pavement is a pavement type using advantages of both flexibility of asphalt pavement and rigidity of concrete pavement by infiltrating cement paste into voids of open graded asphalt mixtures. The semi rigid pavement has better smoothness and smaller driving vibration or noise comparing to the concrete pavement, and has smaller permanent deformation and has temperature falling effect comparing to the asphalt pavement. The temperature falling effect were investigated at a semi rigid overlay pavement test section, and the temperature falling and water retaining effects were verified by measuring the temperature and weight of specimens at a housetop. Horizontal and vertical stresses and strains were compared by structural analysis of the semi rigid pavement and asphalt pavement using the Abaquser o, a commercial 3D finite element analysis program. The results were verified by Bisar 3.0, a multi-layered elastic analysis program. Performance of the semi rigid pavement and asphalt pavement were compared by predicting fatigue cracking based on the structural analysis results.

In-situ dynamic loading test of a hybrid continuous arch bridge

  • Gou, Hongye;Li, Liang;Hong, Yu;Bao, Yi;Pu, Qianhui
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.809-817
    • /
    • 2021
  • In this study, the dynamic behavior of a three-span hybrid continuous arch bridge under vehicle loading is investigated. The natural vibration characteristics of the bridge were analyzed through pulsation test. In the dynamic loading test, the vibrations of the bridge under different truck speeds and different pavement conditions were tested, and time histories of deflection and acceleration of the bridge were measured. Based on the dynamic loading test, the impact coefficient was analyzed. The results indicate that the pavement smoothness had more impacts on the vibration of the bridge than the truck's speed. The vertical damping of the bridge under the excitation of the trucks is larger than the transverse damping. Resonance occurs at the side span of the bridge under a truck at 10 km/h.

Bond Characteristics at the Interface between HMA Surface and RCC Base (아스팔트 표층과 RCC 기층 계면에서의 부착특성 연구)

  • Hong, Ki;Kim, Young Kyu;Bae, Abraham;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.37-46
    • /
    • 2017
  • PURPOSES : A composite pavement utilizes both an asphalt surface and a concrete base. Typically, a concrete base layer provides structural capacity, while an asphalt surface layer provides smoothness and riding quality. This pavement type can be used in conjunction with rollercompacted concrete (RCC) pavement as a base layer due to its fast construction, economic efficiency, and structural performance. However, the service life and functionality of composite pavement may be reduced due to interfacial bond failure. Therefore, adequate interfacial bonding between the asphalt surface and the concrete base is essential to achieving monolithic behavior. The purpose of this study is to investigate the bond characteristics at the interface between asphalt (HMA; hot-mixed asphalt) and the RCC base. METHODS : This study was performed to determine the optimal type and application rate of tack coat material for RCC-base composite pavement. In addition, the core size effect, temperature condition, and bonding failure shape were analyzed to investigate the bonding characteristics at the interface between the RCC base and HMA surface. To evaluate the bond strength, a pull-off test was performed using different diameters of specimens such as 50 mm and 100 mm. Tack coat materials such as RSC-4 and BD-Coat were applied in amounts of 0.3, 0.5, 0.7, 0.9, and $1.1l/m^2$ to determine the optimal application rate. In order to evaluate the bond strength characteristics with temperature changes, a pull-off test was carried out at -15, 0, 20, and $40^{\circ}C$. In addition, the bond failure shapes were analyzed using an image analysis program after the pull-off tests were completed. RESULTS : The test results indicated that the optimal application rate of RSC-4 and BD-Coat were $0.8l/m^2$, $0.9l/m^2$, respectively. The core size effect was determined to be negligible because the bond strengths were similar in specimens with diameters of 50 mm and 100 mm. The bond strengths of RSC-4 and BD-Coat were found to decrease significantly when the temperature increased. As a result of the bonding failure shape in low-temperature conditions such as -15, 0, and $20^{\circ}C$, it was found that most of the debonding occurred at the interface between the tack coat and RCC surface. On the other hand, the interface between the HMA and tack coat was weaker than that between the tack coat and RCC at a high temperature of $40^{\circ}C$. CONCLUSIONS : This study suggested an optimal application rate of tack coat materials to apply to RCC-base composite pavement. The bond strengths at high temperatures were significantly lower than the required bond (tensile) strength of 0.4 MPa. It was known that the temperature was a critical factor affecting the bond strength at the interface of the RCC-base composite pavement.

Investigation of the Bond and Deformation Characteristics between an Asphalt layer and a Concrete Slab used as the Trackbed Foundation of an Embedded Rail System for Wireless Trams (무가선 트램용 매립형궤도 아스팔트 포장층의 부착특성 및 변형발생특성 분석)

  • Cho, Hojin;Kang, Yunsuk;Lee, Suhyung;Park, Jeabeom;Lim, Yujin
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.224-233
    • /
    • 2016
  • Embedded Railway Systems (ERS) will be adapted for wireless trams and will be constructed along city roadways. An asphalt layer should be overlaid on top of the concrete slab used as the trackbed structure in order to ensure smoothness and surface levels equal to those of existing road pavement in downtown city areas. However, the characteristics of an asphalt layer when used as overlay pavement for an ERS are complicated and the behavior of this material is not yet well defined and understood. Therefore, in this study, laboratory shear and tensile bond strength tests were conducted to investigate the bonding behavior of an asphalt layer in a multilayered trackbed section of an ERS. For the laboratory tests, a waterproof coating material was selected as a bonding material between the asphalt overlay and a concrete specimen. Valuable design parameters could be obtained based on the tensile and shear bond strength test results, providing information about the serviceability and durability of the overlaid pavements to be constructed alongside the ERS for wireless trams. In addition, a deformation analysis to assess the tensile strain generated due to truck axle loads at the interface between the asphalt layer and the concrete slab was conducted to verify the stability and performance of the asphalt layer.