• Title/Summary/Keyword: pavement life

Search Result 240, Processing Time 0.026 seconds

A Study on the Factors Affecting on the Life of Bonded Concrete Overlay Pavement using the LTPP Data of U.S.A (미국 LTPP Data를 활용한 접착식 콘크리트 덧씌우기 포장 수명에 영향을 미치는 인자에 관한 연구)

  • Lee, Seung Woo;Son, Hyeon Jang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4D
    • /
    • pp.555-564
    • /
    • 2011
  • More than sixty percentages of the highway constructed by concrete pavements in South Korea and over half of the concrete pavements were twenty years or older. The most of South Korea road is hard to provide a bypass in conditions of network of roads. Asphalt concrete overlay has been used for the overlay of aged concrete pavement. However, the cost of maintenance and rehabilitation in an asphalt overlay is expensive by early damage. Therefore, bonded concrete overlay was recently attempted in South Korea as an alterative method of rehabilitation for aged concrete pavement. Hence, it needed to investigate the factors to find performance of the bonded concrete overlay life. However, there is no performance data of the concrete overlay in South Korea. This study was to make a database of an affecting of the pavement life and draws statistical analysis of the performance data on the LTPP (Long Term Pavement Performance) database of U.S.A.

Feasibility Study the Assessment Factor of Quality Performance Index in Expressway Concrete Pavement (고속도로 콘크리트 포장에 대한 품질평가지수 평가인자의 적정성 검토)

  • Lee, Seung Woo;Kim, Gyung il;Ko, Dong Sig;Hong, Seung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.133-141
    • /
    • 2017
  • Traffic volume increases according to highway expansion and industrial development which causes repetitive defect and durability degradation on pavement. The research of quality assurance system used abroad has introduced Korea. Korea Expressway Corporation (KEC) has developed a Quality Performance Index (QPI) that quantitatively assesses the level of quality of the final product, and practical applications. Assessment factor on concrete pavement consisted of pavement thickness, compressive strength, IRI and spacing factor. Assessment factor on concrete pavement is determined by empirical evaluation factor from abroad. In this study, analysis of evaluation factors of concrete pavement by using pavement life prediction simulation and measured data were evaluated with consideration of feasibility of the assessment factor. Pavement life, performance and durability are affected by pavement thickness, compressive strength, IRI and spacing factor in assessment factor on concrete pavement, QPI.

A Study on Development of Pavement Management System for Cement Concrete Pavement (시멘트콘크리트포장의 유지관리체계(PMS)에 관한 연구)

  • 엄주용;김남호;임승욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.363-369
    • /
    • 1996
  • PMS(Pavement Management System) is the effective and efficient decision making system to provide pavements in an acceptable condition at the lowest life-cycle cost. As the highway system become larger, the necessity of the PMS in increasing. As of December 1995, the 3rd stage of PMS project was completed. The accomplishment of the research work can be itemized to the followings : $\bullet$ Calibration of PMS submodules (1) Pavement Condition Evaluation Model (2) Pavement Distress Prediction Model (3) Pavement Performance Prediction Mode (4) Selection of Pavement Rehabilitation Criteria (5) Optimization Technique for PMS Economic Analysis $\bullet$ Development of Computer Program to Implement PMS Logic $\bullet$ A Study to Implement the Automized Pavement Condition Survey Equipment to PMS $\bullet$ PMS Test Run $\bullet$ Development of PMS Operation Guideline $\bullet$ The 2nd Pavement Condition Survey for Long-Term Pavement Performance Monitoring.

  • PDF

Development of a Procedure for Remaining Life Estimation in Airfield Concrete Pavement (공항 콘크리트 포장의 잔존수명 산출 논리 개선 연구)

  • Kwon Soo-Ahn;Suh Young-Chan;Cho Yong-Joo
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.131-138
    • /
    • 2006
  • Methods of back calculation for either design procedures or elastic moduli obtained from FWD(Falling Weight Deflectometer) tests have widely been used to predict remaining life of airfield concrete pavements. Since the variation of the elastic modulus obtained from the FWD test depends on the back calculation methods, prediction of remaining life of airfield pavement using the back calculation method has not been reliable. In addition, the FWD method only concentrates on the structural integrity of the pavement without considering functional distress. In this study, a newly developed remaining life estimation procedure is proposed. This methodology includes both structural and functional consideration and suggests models and decision criteria for each stage. In order to improve the estimation procedure on remaining life of pavement, conducted the several tests on an old airfield concrete pavement. As a result, it is concluded that the load transfer efficiency on joint is better for predicting remaining life of pavement than the elastic modulus, which is commonly used. In order to verify applicability of the newly developed estimation procedure and detailed models, investigation and analysis were conducted according to the new methodology on C-airfield pavement. Finally, it is confirmed that the efficiency of the proposed method for practical application was good enough.

  • PDF

Performance Estimation and Maintenance Method for Road Pavement Sections (국도 포장의 장기 공용성 추정 및 유지관리 방안)

  • Lee, Young-Uk;Do, Myung-Sik;Lee, Jong-Dal;Jang, Min-Keun
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.125-129
    • /
    • 2007
  • In this paper, a PMS(Pavement Management System) application is presented to control the LCC(Life Cycle Cost) of road pavement. The aim of this paper is to provide the decision makers with the planning information regarding maintenance strategies for efficient road pavement management. The validity of PMS application presented in this paper is investigated through case studies for conducted for 22 national highway road sections in Korea.

  • PDF

The Fatigue Life of Transverse Joint of Concrete Pavement (줄눈콘크리트 포장 가로줄눈부의 피로수명)

  • Hwang, Seung-Eui;Song, Jun-Ho;Go, Young-Ju;Bae, Ju-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.199-206
    • /
    • 2003
  • This paper presents the fatigue life of transverse joint of concrete pavement with the fatigue model test. A 1/12 scale model was used to satisfy the geometric load, material similitude, which are variables to the skew angel of transverse joint. From the test results by fatigue load 700kgf applied, we can have that the fatigue life of transverse joint with skew angle is better than that of transverse joint without skew angle. In addition, we can have that the fatigue life of skewed transverse joint with angle of 10 degree is better than that of skewed transverse joint with angle of 20 degree.

Pobabilistic Design of Asphalt Pavement Surface Courae (아스팔트 鋪裝道路의 確率論的 表層設計)

  • Kim, Gwang-U;Yeon, Gyu-Seok
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.1
    • /
    • pp.66-77
    • /
    • 1992
  • A prototype probabilistic approach to thickness design for asphalt pavement surface course was developed using first-order second moment probability model. The tensile strain (load effect) developing at the bottom of surface layer due to the wheel load and the critical strain (resistance) of asphalt concrete were used as random variables for pavement reliability analysis. Based on the parameters for load effect and resistance data collected from reference and field, simulated data were generated by Monte Carlo method for reliability evaluation of the pavement for a typical rural highway. Thickness of pavement surface course was defined in terms of target reliability of the pavement, growth factor of traffic, design life of pavement and resistance of the asphalt concrete to be placed on the pavement. According to these rationales, prototype thickness design chrats were sugested through example studies. From these, similar design charts can be developed for many pavements if appropriate data and target reliability are determined.

  • PDF

Field Performance Evaluation of Preventive Maintenance Methods (예방적 유지보수 공법의 현장 적용성능 평가 연구)

  • Lee, Sang Yum
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.103-112
    • /
    • 2017
  • PURPOSES : In this study, field performance evaluation of crack treatment of pavement and the feasibility of surface treatment of pavement are presented. The performance and cost of preventive maintenance methods have been previously verified, and the methods are being used in many developed countries and cities. However, the performance and cost of the system have not been verified in domestic, field applications. Therefore, in order to improve performance, the field performance is evaluated, and a reasonable cost is proposed. METHODS : Visual Inspection was conducted to evaluate the field application and performance of the preventive maintenance method. In addition, the PCI index was calculated from the results of visual inspection of the application area of the surface treatment method, and the performance life of each method was predicted. For the economic evaluation, life cycle cost analysis was performed using the life cycle cost analysis program. RESULTS :In order to evaluate and quantify the field performance of crack repair material, the residue condition of the pavement surface after crack treatment, rather than the performance of the material, is evaluated. In addition, the crack resistance and performance life of surface treatment methods are evaluated. The cost of currently available treatment methods are compared to the common pavement cut and overlay method, and it is determined that the preventive method is not economical based on life cycle cost analysis. CONCLUSIONS :Because of the characteristics of cracking, it is necessary to conduct the evaluation of currently applied methods and the analysis of the cause of damage, by visual inspection. Moreover, in order to evaluate the performance and economic suitability of the currently applied surface treatment methods, it is necessary to acquire information on application sections by monitoring their long-term conditions and performance.

Engineering Properties of Permeable Polymer Concrete for Pavement Using Polypropylene Fiber (폴리프로필렌섬유를 혼입한 포장용 투수성 폴리머 콘크리트의 공학적 성질)

  • Sung, Chan-Yong;Lee, Seung-Hoon
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.2
    • /
    • pp.277-283
    • /
    • 2010
  • Research on permeable pavement like asphalt and concrete pavement with porous structure has been increasing due to environmental and functional need such as reduction of run off and flood. This study was performed to evaluate void ratio, permeability coefficient, and compressive strength of permeable polymer concrete (PPC) using crushed and recycled coarse aggregate that is obtained from waste concrete. Also, 6 mm length of polypropylene fiber was used to increase toughness and interlocking between aggregate and aggregate surrounded by binder. Binder and filler used were unsaturated polyester resin and CaCO3, respectively. The mix proportions were determined to satisfy the requirement for the workability and slump according to aggregate sizes 5~10 mm. In the test results, regardless of kinds of aggregates and fiber contents, the void ratio, permeability coefficient and compressive strength of all types of PPC showed the higher than the criterion of porous concrete that is used in permeable pavement in Korea. Also, strengths of PPC with increase polypropylene fiber volume fraction showed slightly increased tendency due to increase binder with increase of fiber volume fraction. Accordingly, polypropylene fiber and recycled coarse aggregate can be used for permeable pavement.

Analysis of Road Pavement Condition and Structural Improvement Plan (서울시 도로포장 상태에 대한 분석 및 구조적 개선방안)

  • Bae, Yoon-Shin;Shin, Kyoung-Yub
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.2
    • /
    • pp.119-137
    • /
    • 2012
  • In this study, the damages and condition of road pavement were analyzed using pavement management system (PMS) for the structural improvement. Problems of road pavement management were issued by in-depth interview with workers in charge of plant, construction and supervision. By surveying advanced road pavement management, the way how to improve road pavement management in Seoul was discussed. In conclusion, it is necessary to take measures against road heavy traffic and heavy rain in summer. It was found that the problem of early damages of road pavement due to uniform layout with analyzing life cycle cost (LCC). According to the results of survey, it was suggested to strength practical training and to control precisely the temperature of pavement in the process of production and construction.