• 제목/요약/키워드: pattern-mixture model

검색결과 66건 처리시간 0.036초

결측이 있는 이산형 공변량에 대한 Cox비례위험모형의 패턴-혼합 모델 (Pattern-Mixture Model of the Cox Proportional Hazards Model with Missing Binary Covariates)

  • 육태미;송주원
    • 응용통계연구
    • /
    • 제25권2호
    • /
    • pp.279-291
    • /
    • 2012
  • 공변량에 결측이 발생한 Cox 비례위험 모형을 적합할 때, 결측이 발생하는 개체를 모두 제거한 후 분석을 실시한다면 정보 손실에 의해 비효율적이고 결측의 발생 메커니즘이 완전 임의 결측(missing completely at random; MCAR)이 아니라면 모수의 추정값에 편향이 발생할 수 있다. Cox 비례위험 회귀모형의 공변량에 결측이 있는 경우 적용할 수 있는 여러 가지 방법들이 제안되어져 왔으나 이 분석들은 선택모델(selection model)에 기반하고 있다. 본 연구에서는 Little (1993)이 제안한 패턴-혼합 모델(pattern-mixture model)을 사용하여 Cox 비례위험 회귀모형에서 생존시간과 결측 메커니즘의 결합분포를 모델화 하고, 여러 가지 제약에 근거한 생존 분석의 결과를 비교하였다. 모의실험을 통해서 패턴-혼합 모델의 제약(restrictions)에 따른 모수 추정의 민감도를 확인하였고 결측을 무시한 채 분석한 결과 및 선택모형에 근거한 분석결과와 비교하였다. 패턴-혼합 모델의 제약에 따라 공변량의 결측으로 인한 모수 추정의 민감성 정도를 쥐백혈병 자료 예제를 통해 설명하였다.

Bayesian Pattern Mixture Model for Longitudinal Binary Data with Nonignorable Missingness

  • Kyoung, Yujung;Lee, Keunbaik
    • Communications for Statistical Applications and Methods
    • /
    • 제22권6호
    • /
    • pp.589-598
    • /
    • 2015
  • In longitudinal studies missing data are common and require a complicated analysis. There are two popular modeling frameworks, pattern mixture model (PMM) and selection models (SM) to analyze the missing data. We focus on the PMM and we also propose Bayesian pattern mixture models using generalized linear mixed models (GLMMs) for longitudinal binary data. Sensitivity analysis is used under the missing not at random assumption.

Gaussian Mixture Model 기반 전완 근전도 패턴 분류 알고리즘 (A Gaussian Mixture Model Based Pattern Classification Algorithm of Forearm Electromyogram)

  • 송영록;김서준;정의철;이상민
    • 재활복지공학회논문지
    • /
    • 제5권1호
    • /
    • pp.95-101
    • /
    • 2011
  • 본 논문에서는 의수환자의 일상생활을 고려한 1-자유도 동작을 손을 쥐고 폄으로 정의하고, 두 동작에 대한 근전도 패턴 분류를 위한 가우시안 혼합 모델 기반의 근전도 패턴 분류 알고리즘을 제안한다. 근전도 패턴 분류 알고리즘의 핵심이 되는 근전도 신호의 특징점 추출을 위하여 근전 신호의 진폭 특성을 고려하는 절대차분평균치(DAMV)와 평균절대값(MAV)을 사용한다. 또한 동작에 대한 근전 신호의 진폭 특성을 보다 명확히 구분하기 위하여 D_DAMV와 D_MAV를 제안한다. 본 논문에서는 4명의 성인남성을 대상으로 실험을 실시하였고, 두 동작에 대한 근전도 패턴의 정확한 분류 여부를 확인하였다.

커뮤니티 사이트 특성과 navigation pattern 연관성의 세분시장별 이질성분석 - 믹스처모델의 구조방정식 적용을 중심으로 - (Exploring Navigation Pattern and Site Evaluation Variation in a Community Website by Mixture Model at Segment Level)

  • 김소영;곽영식;남용식
    • 마케팅과학연구
    • /
    • 제13권
    • /
    • pp.209-229
    • /
    • 2004
  • 기존의 인터넷소비자의 방문행동에 관한 연구들이 대부분 전체시장 수준에서 이루어졌고, 시장세분화를 하더라도 사전적 시장세분화로서 연구자의 주관이 반영되는 경우가 많다는 문제점이 있었다. 본 연구에서는 세분시장 수준에서의 인터넷소비자 방문행동 연구가 필요하다는 점과 함께 연구자의 임의성율 배제한 사후적 시장세분화의 필요성을 제기하고 이를 믹스처모델로 실증적으로 분석하였다. 또한 기존 연구가 웹사이트 평가요인과 방문행동 간의 단편적인 인과관계를 파악한 것과는 달리, 웹 사이트 방문행동에 영향을 미치는 요인들 간의 간접효과에 따른 통합적인 인과관계를 파악하였다. 연구에서는 실제 커뮤니티 사이트를 방문한 1,765명 의 웹상의 움직임과 설문조사를 통해 세분시장별로 이질적인 navigation pattern 과 원인변수와의 관계가 존재함을 입증하였다. 마케터는 이런 세분시장멸 이질적 관계를 이용하여 eCRM을 실행함에 있어 navigation pattern의 이질성에 영향을 미치는 변수를 세분시장별로 조절함으로써 기업이 원하는 방향으로 고객의 웹사이트 방문행위를 유도할 수 있는 기회를 얻게 되었다.

  • PDF

Use of Factor Analyzer Normal Mixture Model with Mean Pattern Modeling on Clustering Genes

  • Kim Seung-Gu
    • Communications for Statistical Applications and Methods
    • /
    • 제13권1호
    • /
    • pp.113-123
    • /
    • 2006
  • Normal mixture model(NMM) frequently used to cluster genes on microarray gene expression data. In this paper some of component means of NMM are modelled by a linear regression model so that its design matrix presents the pattern between sample classes in microarray matrix. This modelling for the component means by given design matrices certainly has an advantage that we can lead the clusters that are previously designed. However, it suffers from 'overfitting' problem because in practice genes often are highly dimensional. This problem also arises when the NMM restricted by the linear model for component-means is fitted. To cope with this problem, in this paper, the use of the factor analyzer NMM restricted by linear model is proposed to cluster genes. Also several design matrices which are useful for clustering genes are provided.

RAYLEIGH와 ERLANG 추세를 가진 혼합 고장모형에 대한 베이지안 추론에 관한 연구 (Bayesian Inference for Mixture Failure Model of Rayleigh and Erlang Pattern)

  • 김희철;이승주
    • 응용통계연구
    • /
    • 제13권2호
    • /
    • pp.505-514
    • /
    • 2000
  • 마코브체인 몬테칼로방법중에서 깁스 추출방법을 혼합 고장모형에 이용하였다. 베이자안 추론에서 조건부분포를 가지고 사후 분포를 결정하는데 있어서 계산 문제와 이론적인 정당성을 고려하여 감마족인 Rayleigh와 Erlang추세를 가진 혼합모형에 대하여 깁스샘플링 알고리즘을 이용하여 베이지안 계산과 신뢰도 추이를 알아보고 모의실험자료를 이용하여 수치적인 계산을 시행하고 그 결과를 제시하였다.

  • PDF

Classification Analysis in Information Retrieval by Using Gauss Patterns

  • Lee, Jung-Jin;Kim, Soo-Kwan
    • Communications for Statistical Applications and Methods
    • /
    • 제9권1호
    • /
    • pp.1-11
    • /
    • 2002
  • This paper discusses problems of the Poisson Mixture model which Is widely used to decide the effective words in judging relevant document. Gamma Distribution model and Gauss Patterns model as an alternative of the Poisson Mixture model are studied. Classification experiments by using TREC sub-collection, WSJ[1,2] with MGQUERY and AidSearch3.0 system are discussed.

손목 움직임 추정을 위한 Gaussian Mixture Model 기반 표면 근전도 패턴 분류 알고리즘 (A Gaussian Mixture Model Based Surface Electromyogram Pattern Classification Algorithm for Estimation of Wrist Motions)

  • 정의철;유송현;이상민;송영록
    • 대한의용생체공학회:의공학회지
    • /
    • 제33권2호
    • /
    • pp.65-71
    • /
    • 2012
  • In this paper, the Gaussian Mixture Model(GMM) which is very robust modeling for pattern classification is proposed to classify wrist motions using surface electromyograms(EMG). EMG is widely used to recognize wrist motions such as up, down, left, right, rest, and is obtained from two electrodes placed on the flexor carpi ulnaris and extensor carpi ulnaris of 15 subjects under no strain condition during wrist motions. Also, EMG-based feature is derived from extracted EMG signals in time domain for fast processing. The estimated features based in difference absolute mean value(DAMV) are used for motion classification through GMM. The performance of our approach is evaluated by recognition rates and it is found that the proposed GMM-based method yields better results than conventional schemes including k-Nearest Neighbor(k-NN), Quadratic Discriminant Analysis(QDA) and Linear Discriminant Analysis(LDA).

A Finite Mixture Model for Gene Expression and Methylation Pro les in a Bayesian Framewor

  • Jeong, Jae-Sik
    • 응용통계연구
    • /
    • 제24권4호
    • /
    • pp.609-622
    • /
    • 2011
  • The pattern of methylation draws significant attention from cancer researchers because it is believed that DNA methylation and gene expression have a causal relationship. As the interest in the role of methylation patterns in cancer studies (especially drug resistant cancers) increases, many studies have been done investigating the association between gene expression and methylation. However, a model-based approach is still in urgent need. We developed a finite mixture model in the Bayesian framework to find a possible relationship between gene expression and methylation. For inference, we employ Expectation-Maximization(EM) algorithm to deal with latent (unobserved) variable, producing estimates of parameters in the model. Then we validated our model through simulation study and then applied the method to real data: wild type and hydroxytamoxifen(OHT) resistant MCF7 breast cancer cell lines.

Semi-Supervised Recursive Learning of Discriminative Mixture Models for Time-Series Classification

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권3호
    • /
    • pp.186-199
    • /
    • 2013
  • We pose pattern classification as a density estimation problem where we consider mixtures of generative models under partially labeled data setups. Unlike traditional approaches that estimate density everywhere in data space, we focus on the density along the decision boundary that can yield more discriminative models with superior classification performance. We extend our earlier work on the recursive estimation method for discriminative mixture models to semi-supervised learning setups where some of the data points lack class labels. Our model exploits the mixture structure in the functional gradient framework: it searches for the base mixture component model in a greedy fashion, maximizing the conditional class likelihoods for the labeled data and at the same time minimizing the uncertainty of class label prediction for unlabeled data points. The objective can be effectively imposed as individual mixture component learning on weighted data, hence our mixture learning typically becomes highly efficient for popular base generative models like Gaussians or hidden Markov models. Moreover, apart from the expectation-maximization algorithm, the proposed recursive estimation has several advantages including the lack of need for a pre-determined mixture order and robustness to the choice of initial parameters. We demonstrate the benefits of the proposed approach on a comprehensive set of evaluations consisting of diverse time-series classification problems in semi-supervised scenarios.