• Title/Summary/Keyword: pattern map

Search Result 670, Processing Time 0.033 seconds

Classification of Intraseasonal Oscillation in Precipitation using Self-Organizing Map for the East Asian Summer Monsoon (동아시아 여름몬순 지수의 자기조직화지도(SOM)에 의한 강수량의 계절 내 진동 분류)

  • Chu, Jung-Eun;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.21 no.3
    • /
    • pp.221-228
    • /
    • 2011
  • The nonlinear characteristics of summer monsoon intraseasonal oscillation (ISO) in precipitation, which is manifested as fluctuations in convection and circulation, is one of the major difficulty on the prediction of East Asian summer monsoon (EASM). The present study aims to identify the spatial distribution and time evolution of nonlinear phases of monsoon ISO. In order to classify the different phases of monsoon ISO, Self-Organizing Map(SOM) known as a nonlinear pattern recognition technique is used. SOM has a great attractiveness detecting self-similarity among data elements by grouping and clustering such self-similar components. The four important patterns are demonstrated as Meiyu-Baiu, Changma, post-Changma, and dry-spell modes. It is found that SOM well captured the formation of East Asian monsoon trough during early summer and its northward migration together with enhanced convection over subtropical western Pacific and regionally intensive precipitation including Meiyu, Changma and Baiu. The classification of fundamental large scale spatial pattern and evolutionary history of nonlinear phases of monsoon ISO provides the source of predictability for extended-range forecast of summer precipitation.

Eco-friendly Production of Maize Using Struvite Recovered from Swine Wastewater as a Sustainable Fertilizer Source

  • Liu, YingHao;Rahman, M.M.;Kwag, Jung-Hoon;Kim, Jae-Hwan;Ra, Chang-Six
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.12
    • /
    • pp.1699-1705
    • /
    • 2011
  • Magnesium ammonium phosphate (MAP) was recovered from swine wastewater and the feasibility of reutilizing it as a slowly-releasing fertilizer was evaluated. Maize growth was investigated with normal and high application rates of MAP and a fused super phosphate (FSP) fertilizer. A total of 5 treatments ($T_0$ = control, $T_1$ = MAP based on 30 kg P $ha^{-1}$, $T_2$ = FSP based on 30 kg P $ha^{-1}$+urea equivalent to nitrogen of MAP applied in $T_1$, $T_3$ = MAP based on 40 kg P $ha^{-1}$, $T_4$ = FSP based on 40 kg P $ha^{-1}$+urea equivalent to nitrogen of MAP applied in $T_3$) were arranged with 3 replications. In the case of height and circumference, significant differences were found between controls and treated maize plants (p<0.01). However, no statistical differences were found between MAP- and FSP-urea treated maize. Leaf area and green biomass yield were significantly (p<0.01) higher in the treated group than control. Leaf area was also found significantly higher (p<0.01) in the higher MAP- treated group (2,374 $cm^2$ $plant^{-1}$) than other treatments. $N_2O$ emission was found to be lower in MAP treated soil than that from FSP-urea treated soil, which might be due to the slow releasing pattern of MAP. It could be assumed from the results that MAP would be an eco-friendly sustainable fertilizer source for crop production.

Validity Study of Kohonen Self-Organizing Maps

  • Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.507-517
    • /
    • 2003
  • Self-organizing map (SOM) has been developed mainly by T. Kohonen and his colleagues as a unsupervised learning neural network. Because of its topological ordering property, SOM is known to be very useful in pattern recognition and text information retrieval areas. Recently, data miners use Kohonen´s mapping method frequently in exploratory analyses of large data sets. One problem facing SOM builder is that there exists no sensible criterion for evaluating goodness-of-fit of the map at hand. In this short communication, we propose valid evaluation procedures for the Kohonen SOM of any size. The methods can be used in selecting the best map among several candidates.

Wafer Map Image Analysis Methods in Semiconductor Manufacturing System (반도체 공정에서의 Wafer Map Image 분석 방법론)

  • Yoo, Youngji;An, Daewoong;Park, Seung Hwan;Baek, Jun-Geol
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.3
    • /
    • pp.267-274
    • /
    • 2015
  • In the semiconductor manufacturing post-FAB process, predicting a package test result accurately in the wafer testing phase is a key element to ensure the competitiveness of companies. The prediction of package test can reduce unnecessary inspection time and expense. However, an analysing method is not sufficient to analyze data collected at wafer testing phase. Therefore, many companies have been using a summary information such as a mean, weighted sum and variance, and the summarized data reduces a prediction accuracy. In the paper, we propose an analysis method for Wafer Map Image collected at wafer testing process and conduct an experiment using real data.

Fast Depth Map Estimation using Parallel Processing based on GPU (GPU기반 Depth Map 회득을 위한 고속 병렬처리 기법)

  • Jin, Moon-Sub;Choi, Ji-Yoon;Choo, Hyon-Gon;Kim, Jin-Woong;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.396-398
    • /
    • 2011
  • 본 논문은 두 대의 카메라와 한 대의 프로젝터로 구성된 Pro-cam시스템을 이용하여, 출력된 패턴 영상을 카메라로 촬영하고 이를 기반으로 Depth Map을 계산하는 모듈의 실시간 처리를 위한 GPU기반 병렬처리 기법을 제안한다. 입력받은 영상으로부터 구조광의 패턴을 해석하고, Depth Map을 계산하기 위해서, Dynamic pattern decoding하는 과정은 프로젝터의 패턴영상과 촬영된 카메라 패턴영상 간의 관계를 반복적으로 비교하므로, 이를 GPU 프로그래밍을 이용하여 병렬 처리를 통해 고속화하였다. 결과적으로 본 논문에서는 기존 CPU에서 수행했던 속도에 비해 약 18배정도 속도를 개선 할 수 있었다.

  • PDF

Electrical equipment pattern analysis using Class Activation Map (Class Activation Map을 활용한 전력 설비 패턴의 주요원인 분석)

  • Jang, Young-Jun;Kim, Ji-Ho;Choi, Young-Jin;lee, Hong-Chul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.75-77
    • /
    • 2021
  • 전력 생산의 효율을 높이고 지속적인 공정관리를 위해 전력 설비 데이터의 패턴을 분석하고 원인이 되는 주요 변수를 찾는 것이 중요하다. 따라서, 본 연구에서는 전력 설비 데이터의 패턴을 분석하기 위해 데이터를 군집화하고 연구 방법으로 Decision Tree, Random Forest와 ResNet을 이용하여 패턴을 분류하였다. Class Activation Map을 이용하여 설비데이터의 원인이 되는 주요 변수를 확인하였다. 본 연구를 통해 전력 설비 데이터의 분류 및 원인 분석이 가능한 통합적 솔루션을 제시하고자 한다.

  • PDF

Localization for Mobile Robot Using Vertical Line Features (수직선 특징을 이용한 이동 로봇의 자기 위치 추정)

  • 강창훈;안현식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.937-942
    • /
    • 2003
  • We present a self-localization method for mobile robots using vertical line features of indoor environment. When a 2D map including feature points and color information is given, a mobile robot moves to the destination, and acquires images from the surroundings having vertical line edges by one camera. From the image, vertical line edges are detected, and pattern vectors meaning averaged color values of the left and right regions of the each line are computed by using the properties of the line and a region growing method. The pattern vectors are matched with the feature points of the map by comparing the color information and the geometrical relationship. From the perspective transformation and rigid transformation of the corresponded points, nonlinear equations are derived. Localization is carried out from solving the equations by using Newton's method. Experimental results show that the proposed method using mono view is simple and applicable to indoor environment.

Localization for Mobile Robot Using Vertical Lines

  • Kang, Chang-Hun;Ahn, Hyun-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.793-797
    • /
    • 2003
  • In this paper, we present a self-localization method for mobile robots using vertical line features of indoor environment. When a 2D map including feature points and color information is given, a mobile robot moves to the destination, and acquires images by one camera from the surroundings having vertical line edges. From the image, vertical line edges are detected, and pattern vectors meaning averaged color values of the left and right region of each line segment are computed. The pattern vectors are matched with the feature points of the map using the color information and the geometrical relationship of the points. From the perspective transformation of the corresponded points, nonlinear equations are derived. Localization is carried out from solving the equations by using Newton's method. Experimental results show that the proposed method using mono view is simple and applicable to indoor environment.

  • PDF

FEASIBILITY MAPPING OF GROUND WATER YIELD CHARACTERISTICS USING WEIGHT OF EVIDENCE TECHNIQUE: A CASE STUDY

  • Heo, Seon-Hee;Lee, Ki-Won
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.430-433
    • /
    • 2005
  • In this study, weight of evidence(WOE) technique based on the bayesian method was applied to estimate the groundwater yield characteristics in the Pocheon area in Kyungki-do. The ground water preservation depends on many hydrogeologic factors that include hydrologic data, landuse data, topographic data, geological map and other natural materials, even with man-made things. All these data can be digitally collected and managed by GIS database. In the applied technique of WOE, The prior probabilities were estimated as the factors that affect the yield on lineament, geology, drainage pattern or river system density, landuse and soil. We calculated the value of the Weight W+, W- of each factor and estimated the contrast value of it. Results by the ground water yield characteristic calculations were presented in the form of posterior probability map to the consideration of in-situ samples. It is concluded that this technique is regarded as one of the effective technique for the feasibility mapping related to detection of groundwater bearing zones and its spatial pattern.

  • PDF

DTG Big Data Analysis for Fuel Consumption Estimation

  • Cho, Wonhee;Choi, Eunmi
    • Journal of Information Processing Systems
    • /
    • v.13 no.2
    • /
    • pp.285-304
    • /
    • 2017
  • Big data information and pattern analysis have applications in many industrial sectors. To reduce energy consumption effectively, the eco-driving method that reduces the fuel consumption of vehicles has recently come under scrutiny. Using big data on commercial vehicles obtained from digital tachographs (DTGs), it is possible not only to aid traffic safety but also improve eco-driving. In this study, we estimate fuel consumption efficiency by processing and analyzing DTG big data for commercial vehicles using parallel processing with the MapReduce mechanism. Compared to the conventional measurement of fuel consumption using the On-Board Diagnostics II (OBD-II) device, in this paper, we use actual DTG data and OBD-II fuel consumption data to identify meaningful relationships to calculate fuel efficiency rates. Based on the driving pattern extracted from DTG data, estimating fuel consumption is possible by analyzing driving patterns obtained only from DTG big data.