• Title/Summary/Keyword: pattern feature detection

Search Result 190, Processing Time 0.034 seconds

A Study on the Diagnosis of Cutting Tool States Using Cutting Conditions and Cutting Force Parameters(l) - Signal Processing and Feature Extraction - (절삭조건과 절삭력 파라메타를 이용한 공구상태 진단에 관한 연구(I) - 신호처리 및 특징추출 -)

  • Cheong, C.Y.;Yu, K.H.;Suh, N.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.135-140
    • /
    • 1997
  • The detection of cutting tool states in machining is important for the automation. The information of cutting tool states in metal cutting process is uncertain. Hence a industry needs the system which can detect the cutting tool states in real time and control the feed motion. Cutting signal features must be sifted before the classification. In this paper the Fisher's linear discriminant function was applied to the pattern recognition of the cutting tool states successfully. Cutting conditions and cutting force para- meters have shown to be sensitive to tool states, so these cutting conditions and cutting force paramenters can be used as features for tool state detection.

  • PDF

Development of laser tailored blank weld quality monitoring system (레이저 테일러드 블랭크 용접 품질 모니터링 시스템 개발)

  • 박현성;이세헌
    • Laser Solutions
    • /
    • v.3 no.2
    • /
    • pp.53-61
    • /
    • 2000
  • On the laser weld production line, a slight alteration of the welding condition produces many defects. The defects are monitored in real time, in order to prevent continuous occurrence of defects, reduce the loss of material, and guarantee good quality. The measurement system is produced by using three photo-diodes for detection of the plasma and spatter signal in CO$_2$ laser welding. For high speed CO$_2$ laser welding, laser tailored welded blanks for example, on-line weld quality monitoring system was developed by using fuzzy multi-feature pattern recognition. Weld qualities were classified optimal heat input, a little low heat input, low heat input, and focus misalignment, and final weld quality were classified good and bad.

  • PDF

The Detection of Partial Discharge Signal by the Measurement of an Electromagnetic Wave and Pattern Recognition Technique (전자파의 측정과 패턴인식 기법에 의한 부분방전 신호 검출)

  • Kim, Yeong-No;Kim, Jae-Cheol;Seo, In-Cheol;Jeon, Yeong-Jae;Kim, Gwang-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.6
    • /
    • pp.276-283
    • /
    • 2002
  • This Paper Presents the method for detecting a partial discharge(PD) using an electromagnetic wave measured by an antenna. The various electromagnetic waves are measured in the laboratory and wavelet transform, which is provides a direct quantitative measure of spectral content in the time-frequency domain, are applied for identifying the property of electromagnetic waves. Also, the statistical method and self-organizing feature map(SOFM) are applied for the pattern recognition of electromagnetic waves. The proposed method is shown to be useful for detecting electromagnetic waves emitted for PD in test data.

Microphone Type Classification for Digital Audio Forgery Detection (디지털 오디오 위조검출을 위한 마이크로폰 타입 인식)

  • Seok, Jongwon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.3
    • /
    • pp.323-329
    • /
    • 2015
  • In this paper we applied pattern recognition approach to detect audio forgery. Classification of the microphone types and models can help determining the authenticity of the recordings. Canonical correlation analysis was applied to extract feature for microphone classification. We utilized the linear dependence between two near-silence regions. To utilize the advantage of multi-feature based canonical correlation analysis, we selected three commonly used features to capture the temporal and spectral characteristics. Using three different microphones, we tested the usefulness of multi-feature based characteristics of canonical correlation analysis and compared the results with single feature based method. The performance of classification rate was carried out using the backpropagation neural network. Experimental results show the promise of canonical correlation features for microphone classification.

Instance Based Learning Revisited: Feature Weighting and its Applications

  • Song Doo-Heon;Lee Chang-Hun
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.6
    • /
    • pp.762-772
    • /
    • 2006
  • Instance based learning algorithm is the best known lazy learner and has been successfully used in many areas such as pattern analysis, medical analysis, bioinformatics and internet applications. However, its feature weighting scheme is too naive that many other extensions are proposed. Our version of IB3 named as eXtended IBL (XIBL) improves feature weighting scheme by backward stepwise regression and its distance function by VDM family that avoids overestimating discrete valued attributes. Also, XIBL adopts leave-one-out as its noise filtering scheme. Experiments with common artificial domains show that XIBL is better than the original IBL in terms of accuracy and noise tolerance. XIBL is applied to two important applications - intrusion detection and spam mail filtering and the results are promising.

  • PDF

Automatic Classification of Power Quality Disturbances Using Efficient Feature Vector Extraction and Neural Networks (효율적 특징벡터 추출기법와 신경회로망을 이용한 전력외란 자동 식별)

  • Ban, Ji-Hoon;Kim, Hyun-Soo;Nam, Sang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1030-1032
    • /
    • 1998
  • In this paper, an efficient feature vector extraction method and MLP neural network are utilized to automatically detect and classify power quality disturbances, where the proposed classification procedure consists of the following three parts: i.e., (i) PQ disturbance detection using discrete wavelet transform. (ii) feature vector extraction from the detected disturbance. using several methods, such as FFT, DWT, Fisher's criterion. etc.. and (iii) classification of the corresponding type of each PQ disturbance by recognizing the pattern of the extracted feature vector. To demonstrate the performance and, applicability of the proposed classification algorithm. some test results obtained by analyzing 10-class PQ disturbances are also provided.

  • PDF

Condition assessment of stay cables through enhanced time series classification using a deep learning approach

  • Zhang, Zhiming;Yan, Jin;Li, Liangding;Pan, Hong;Dong, Chuanzhi
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.105-116
    • /
    • 2022
  • Stay cables play an essential role in cable-stayed bridges. Severe vibrations and/or harsh environment may result in cable failures. Therefore, an efficient structural health monitoring (SHM) solution for cable damage detection is necessary. This study proposes a data-driven method for immediately detecting cable damage from measured cable forces by recognizing pattern transition from the intact condition when damage occurs. In the proposed method, pattern recognition for cable damage detection is realized by time series classification (TSC) using a deep learning (DL) model, namely, the long short term memory fully convolutional network (LSTM-FCN). First, a TSC classifier is trained and validated using the cable forces (or cable force ratios) collected from intact stay cables, setting the segmented data series as input and the cable (or cable pair) ID as class labels. Subsequently, the classifier is tested using the data collected under possible damaged conditions. Finally, the cable or cable pair corresponding to the least classification accuracy is recommended as the most probable damaged cable or cable pair. A case study using measured cable forces from an in-service cable-stayed bridge shows that the cable with damage can be correctly identified using the proposed DL-TSC method. Compared with existing cable damage detection methods in the literature, the DL-TSC method requires minor data preprocessing and feature engineering and thus enables fast and convenient early detection in real applications.

AUTOMATIC SCALE DETECTION BASED ON DIFFERENCE OF CURVATURE

  • Kawamura, Kei;Ishii, Daisuke;Watanabe, Hiroshi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.482-486
    • /
    • 2009
  • Scale-invariant feature is an effective method for retrieving and classifying images. In this study, we analyze a scale-invariant planar curve features for developing 2D shapes. Scale-space filtering is used to determine contour structures on different scales. However, it is difficult to track significant points on different scales. In mathematics, curvature is considered to be fundamental feature of a planar curve. However, the curvature of a digitized planar curve depends on a scale. Therefore, automatic scale detection for curvature analysis is required for practical use. We propose a technique for achieving automatic scale detection based on difference of curvature. Once the curvature values are normalized with regard to the scale, we can calculate difference in the curvature values for different scales. Further, an appropriate scale and its position are detected simultaneously, thereby avoiding tracking problem. Appropriate scales and their positions can be detected with high accuracy. An advantage of the proposed method is that the detected significant points do not need to be located in the same contour. The validity of the proposed method is confirmed by experimental results.

  • PDF

Pattern Analysis of Personalized ECG Signal by Q, R, S Peak Variability (Q, R, S 피크 변화에 따른 개인별 ECG 신호의 패턴 분석)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong;Kim, Joo-Man;Kim, Seon-Jong;Kim, Byoung-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.192-200
    • /
    • 2015
  • Several algorithms have been developed to classify arrhythmia which rely on specific ECG(Electrocardiogram) database. Nevertheless personalized difference of ECG signal exist, performance degradation occurs because of carrying out diagnosis by general classification rule. Most methods require accurate detection of P-QRS-T point, higher computational cost and larger processing time. But it is difficult to detect the P and T wave signal because of person's individual difference. Therefore it is necessary to classify the pattern by analyzing personalized ECG signal and extracting minimal feature. Thus, QRS pattern Analysis of personalized ECG Signal by Q, R, S peak variability is presented in this paper. For this purpose, we detected R wave through the preprocessing method and extract eight feature by amplitude and phase variability. Also, we classified nine pattern in realtime through peak and morphology variability. PVC, PAC, Normal, LBBB, RBBB, Paced beat arrhythmia is evaluated by using 43 record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 93.72% in QRS pattern detection classification.

A Vision-based Damage Detection for Bridge Cables (교량케이블 영상기반 손상탐지)

  • Ho, Hoai-Nam;Lee, Jong-Jae
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.39-39
    • /
    • 2011
  • This study presents an effective vision-based system for cable bridge damage detection. In theory, cable bridges need to be inspected the outer as well as the inner part. Starting from August 2010, a new research project supported by Korea Ministry of Land, Transportation Maritime Affairs(MLTM) was initiated focusing on the damage detection of cable system. In this study, only the surface damage detection algorithm based on a vision-based system will be focused on, an overview of the vision-based cable damage detection is given in Fig. 1. Basically, the algorithm combines the image enhancement technique with principal component analysis(PCA) to detect damage on cable surfaces. In more detail, the input image from a camera is processed with image enhancement technique to improve image quality, and then it is projected into PCA sub-space. Finally, the Mahalanobis square distance is used for pattern recognition. The algorithm was verified through laboratory tests on three types of cable surface. The algorithm gave very good results, and the next step of this study is to implement the algorithm for real cable bridges.

  • PDF