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ABSTRACT

Scale-invariant feature is an effective method for retrieving
and classifying images. In this study, we analyze a scale-
invariant planar curve features for developing 2D shapes.
Scale-space filtering is used to determine contour structures
on different scales. However, it is difficult to track signif-
icant points on different scales. In mathematics, curvature
is considered to be fundamental feature of a planar curve.
However, the curvature of a digitized planar curve depends
on a scale. Therefore, automatic scale detection for cur-
vature analysis is required for practical use. We propose a
technique for achieving automatic scale detection based on
difference of curvature. Once the curvature values are nor-
malized with regard to the scale, we can calculate difference
in the curvature values for different scales. Further, an ap-
propriate scale and its position are detected simultaneously,
thereby avoiding tracking problem. Appropriate scales and
their positions can be detected with high accuracy. An ad-
vantage of the proposed method is that the detected signif-
icant points do not need to be located in the same contour.
The validity of the proposed method is confirmed by exper-
imental results.

Keywords: scale detection, curvature, planar curve, pat-
tern recognition

1. INTRODUCTION

Scale-invariant feature is an effective method for retrieving
and classifying images. For example, scale-invariant fea-
ture transform (SIFT) features are invariant to image scal-
ing and rotation [1]. The SIFT algorithm is widely used for
achieving content-based image retrieval (CBIR) and solving
image classification problems. For example, in mathemat-
ics, curvature is considered to be a fundamental feature of a
planar curve, and it is invariant to a coordinate system. In
this study, we analyze 2D shapes such as planar curves on
the basis of their curvature.

The curvature of a continuous planar curve is unrelated
to a scale because the differential of the curve is uniquely
determined. However, the curvature of a discrete planar
curve depends on the scale, because the differential of a dis-
crete signal processing has a degree of freedom. For exam-
ple, the differential of the discrete signal is defined as the

convolution between Gaussian derivative filter and the dis-
crete signal. Furthermore, significant points of planar curve
vary on a coarse-to-fine viewpoint. Therefore, it is impor-
tant to consider the scale while determining the curvature.

Thus far, curvature has been considered to be an im-
portant parameter for developing a large number of shape
descriptors in the field of pattern recognition and computer
vision. In the early stage, scale-space filtering for develop-
ing 1D planar curve was proposed [2]. Although this tech-
nique has been effective in determining the structure of the
planar curve, tracking and describing significant points has
seemed to be difficult. Later, a contour-based shape descrip-
tor based on the curvature scale space (CSS) representation
of the contour has been realized [3]. This representation
was further extended and optimized during the MPEG de-
velopment phase.

However, shape descriptors based on the CSS do not
detect the appropriate scale and its position. Tracking of
significant points in CSS representation of the contour is
still needed. The SIFT algorithm solves the above similar
problems using the difference of Gaussian, which approxi-
mates scale-normalized Laplacian of Gaussian. Therefore,
we propose a technique for achieving automatic scale detec-
tion which detects the appropriate scale and its position on
the basis of difference of curvature (DoC) without tracking
them. Instead of Gaussian in the DoG, a scale-normalized
curvature is employed for the DoC. The detection of the ap-
propriate scale and its position is termed “scale point.” An
advantage of scale point is that feature points do not need to
be in a single shape.

In the following section, an overview of the SIFT algo-
rithm and the CSS representation is presented. Then, the
automatic scale detection method is described in detail. Fi-
nally, some experimental results are shown.

2. RELATED WORKS

2.1 SIFT [1]

The SIFT algorithm is used to detect and describe the local
gradient features of images [1]. The gradient of the SIFT
image determines the features, which are invariant to image
scaling and rotation. The SIFT algorithm uses an extrema
of the scale-normalized Laplacian of Gaussian (sLoG) for
detecting appropriate scale.
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Since the computational cost of the sLoG is high, it is
approximated by the DoG such as

sLoG ≈ G(x, y, kσ)−G(x, y, σ)
k − 1

, (1)

wherek is the ratio of adjacent scales. Further, when the im-
age is down-sampled, the computational cost of DoG is dra-
matically reduced. The detected appropriate scale is used to
normalize the significant points (keypoints).

2.2 Curvature Scale Space

The curvature of planar curve is invariant to the coordinate
system. The curvatureκ of the planar curve represented by
a parametric equation(x(t), y(t)) is defined by

κ =
x′y′′ − x′′y′

(x′2 + y′2)3/2
. (2)

Here,x andy are differentiated with respect to parametert.
Scale-space filtering has been proposed to analyze the

structure of planar curve [2]. The planar curve is convo-
luted with Gaussian filters at different scales resulting in the
formation of smoothed curves. An extrema of the first or-
der differential of the curve or the zero-crossing point of the
second order differential of the curve are considered to be
the feature points.

For example, the designed of the contour-based shape
descriptor is based on the CSS representation of the contour
[3]. In the past, this representation has been successfully
used to search and retrieve, and it has been further extended
and optimized during the MPEG development phase.

To develop a contour-shaped CSS descriptor,N equidis-
tant points are selected on the contour. Then, the contour is
gradually smoothed by the repeted application of a low-pass
filter with a kernel(0.25, 0.5, 0.25) to theX andY coor-
dinates of the selectedN contour points. The horizontal
coordinates of the CSS image correspond to the indices of
the contour points which are selected to represent the con-
tour(1, . . . , N), and the vertical coordinates of the CSS im-
age correspond to the amount of filtering carried out which
is defined as the number of passes of the filter. For each
smoothed contour, the zero-crossing of its curvature func-
tion is computed. The CSS image has characteristic peaks.
The coordinate values of the prominent peaks of the CSS
image are determined. A sample of the CSS image is shown
in Fig. 1, while a “driver” as an input shape is shown in Fig.
2. In Fig. 2, the center of the circle indicates the position
of the significant points, and the radius of the circle indi-
cates the number of passes of the filter, which are nonlin-
early transformed.

However, there are three problems in the CSS represen-
tation. First, rigid tracking of feature points scattered in
various smoothed curves is difficult. In practice, rough pat-
tern matching is sufficient. Second, the number of passes of
the filter does not correspond to appropriate scale. Third the
relationship between significant points in different shapes is
not considered.

Fig. 1: CSS of the “driver.” Fig. 2: Significant points
with scales of the “driver.”

3. PROPOSED METHOD

3.1 Scale-normalized Curvature

The differential of a discrete parametric curve should be de-
fined on a scale. It implies that differential of a discrete
parametric curve is defined by a convolution of a derivative
Gaussian function with a parametric curve. The Gaussian
function is defined by

G(t, σ) =
1√

2πσ2
exp(− t2

2σ2
). (3)

This function is derived using the standard deviation. In
this work, standard deviation is termed scale. The differen-
tial of the discrete parametric curve is also derived using the
scale. Therefore the curvature of this curve is also derived
by using the scale. Hence, the differential is defined

x′ = x′[t, σ] = G′[t, σ] ∗ x[t], (4)

y′ = y′[t, σ] = G′[t, σ] ∗ y[t]. (5)

The curvatures of various scales should be normalized.
We consider a curvature operator such as

G′xG′′y −G′′xG′y
(G′2x + G′2y )3/2

. (6)

This operator is used in the case of a parametric curve. Now,
we simplify the operator in order to define a scale normalize
factor. We assume thatx[t] = t, x′ = 1, andx′′ = 0.
Therefore, the curvature operator can be simplified to

G′′

(1 + G′2)3/2
. (7)
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Fig. 3: Shape of curvature operator.

The shape of this operator is shown in Fig. 3. In this figure,
the four areas (A0, A1, A2, A3) have the same size. Then,
the scale factor of this area is chosen as a standard. The
scale factor is defined such that the area is always constant
on any scale. The area is calculated by

A2 =
∫ σ

0

−G′′(t, σ)
(1 + G′(t, σ)2)3/2

dt =
1√

1 + 2πeσ4
. (8)

Therefore, the scale factor is
√

1 + 2πeσ4. In the follow-
ing section, we use a scale-normalized curvature, because
we calculate the difference in the value of the curvatures on
varying scales.

3.2 Difference of Curvature

The scale-normalized curvature has been defined using the
scale. Therefore, instead of Gaussian in the DoG, a scale-
normalized curvature is employed for the DoC.

In this section, we describe the use of DoC to detect the
scale of curvature. The scales of several scale-normalized
curvatures are determined. The ratio of adjacent scales is
the same. The difference in the value of the curvatures
on adjacent scales at same point is estimated. Local maxi-
mum/minimum values simultaneously define the scale point.
The accuracy of detecting the scale point is improved by in-
terpolating a quadratic function. Finally, an accurate scale
point is automatically detected without tracking.

3.3 Down-sampling

In order to obtain a large scale, the tap length of the scale-
normalized curvature operator should be long. To avoid an
increase in the computational cost, we reduce the tap length
of a Gaussian derivative filter, which is responsible for the
formation of the curvature.

The composition of the Gaussian filter is described. The
convolution of two Gaussian filters comprisingσ1 andσ2

with the parametric curve could be achieved by convolut-
ing one Gaussian function comprising

√
σ2

1 + σ2
2 with the

1 Octave

Fig. 4: Octave structure resulting from down-sampling.

parametric curve. This rule is easily applied to the deriva-
tive Gaussian filter. Furthermore, smoothing the curve using
the Gaussian filter comprising2σ and down-sampling it is
equal to down-sampling the curve and smoothing it using
the Gaussian filter comprisingσ. This rule limits the ex-
pansion of the scale. Down-sampling is carried out for the
sufficiently smoothed planar curve.

For the detection of appropriate scales, three DoCs re-
quired and four scale-normalized curvatures are required.
They should consist of same sampling points. The number
of points in some cases is half because of down-sampling.
Therefore, linear interpolation can be used to up-sampling.
An octave structure, resulting from the down-sampling of
the curve and DoCs, is shown in Fig. 4.

If a small number of samples are used, the accuracy of
detecting of the position of the scale point is lower. It is
improved by interpolating a quadratic function.

3.4 Refinement of scale points

The detected feature points are often redundant, i.e., some
feature points are located on adjacent place where the scales
are different. In fact, several appropriate scales may exist
for a partial shape. Therefore, the scale points are refined if
necessary.

Scale points are ordered by a decreasing scale. If a scale
point of small scale exists on the adjacent location of one
of large scale, this scale point of small scale is removed.
The threshold distance between two scale points is larger in
proportion to the scale.

4. EXPERIMENTAL RESULTS

4.1 Scale Invariance

The validity of the DoC is confirmed by an experimental
result. Two shapes are developed where the size of one is
double that of the other. The result of two scale points is
shown in Fig. 5 to Fig. 6. The horizontal axis indicates the
scales, while the vertical axis indicates the value of DoC.
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Fig. 5: Relation between scales and DoCs for two shapes on
the point 1.
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Fig. 6: Relation between scales and DoCs for two shapes on
the point 2.

From these figures, it can be observed that the detected
scales are double such as two shapes. Other scale points are
also the same relation.

4.2 Influence of Down-sampling

Although it is confirmed that automatic scale detection is
realized by performing some preliminary experiments, the
scale points are moved from the position where they are de-
tected by the DoC without down-sampling. The reason of
the movement is that the curvature of the shape is sensitive
to the change of shape. The results of the two DoCs, i.e.,
DoC with/without down-sampling, are shown in Figs. 7 and
8.

Therefore, down-sampling of the curve during DoC is
more difficult compared to that during SIFT. In the rest of
this study, we show the results of DoC without down-sampling.

4.3 Comparison of DoC and CSS

The scale points detected by the proposed DoC and the con-
ventional CSS, which are superimposed on the original con-

Fig. 7: DoC of “driver”
with down sampling.

Fig. 8: DoC of “driver”
without down sampling.

tour, are shown in Figs. 9 and 24, respectively. These shapes
are part of the Part B of CE-Shape-1 [4]. In these figures,
the radiuses of the circles are in proportion to the detected
scale or the number of passes of filter.

The distribution of the scale points detected by the DoC
tends to differ from those detected by the CSS. The pro-
posed DoC algorithm is used to detect convex shapes of
intermediate size. This is because that the DoC algorithm
focuses in the change of curvature. In contrasts the CSS al-
gorithm, it used to detect features of shapes. Note that the
curvature-based feature detection techniques are not effec-
tive for detecting large convex. For example, Figs. 9 and 10
do not have any feature points except a stalk of apples.

An advantage of the DoC algorithm is the ability to de-
tect local scale points. Therefore, a scale point is consid-
ered to be standard when a part of shape is dramatically
changed. Further, the relative position of the scale points is
determined by normalizing the scale. The scale points do
not need to be located in the same contour.

5. CONCLUSIONS

In this study, we propose a technique for achieving auto-
matic scale detection for planar curves based on difference
of curvature. The detection of appropriate scale and its po-
sition, which is termed “scale point,” is analogous to the
difference of Gaussian (DoG) in the SIFT algorithm. There-
fore, the concept of a scale-normalized curvature and differ-
ence of curvature is introduced. The accuracy of detected
the scale point is improved by interpolating quadratic func-
tions. The scale invariance of the scale point is shown in
some experimental results. Therefore, we conclude that the
scale point is a scale-invariant feature.
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Fig. 9: DoC of “apple.” Fig. 10: CSS of “apple.” Fig. 11: DoC of “bat.” Fig. 12: CSS of “bat.”

Fig. 13: DoC of “children.” Fig. 14: CSS of “children.” Fig. 15: DoC of “crown.” Fig. 16: CSS of “crown.”

Fig. 17: DoC of “device0.” Fig. 18: CSS of “device0.” Fig. 19: DoC of “fork.” Fig. 20: CSS of “fork.”

Fig. 21: DoC of “Misk.” Fig. 22: CSS of “Misk.” Fig. 23: DoC of “rat.” Fig. 24: CSS of “rat.”
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