• 제목/요약/키워드: pathology response

검색결과 1,053건 처리시간 0.037초

Enhanced Onion Resistance against Stemphylium Leaf Blight Disease, Caused by Stemphylium vesicarium, by Di-potassium Phosphate and Benzothiadiazole Treatments

  • Kamal, Abo-Elyousr A.M.;Mohamed, Hussein M.A.;Aly, Allam A.D.;Mohamed, Hassan A.H.
    • The Plant Pathology Journal
    • /
    • 제24권2호
    • /
    • pp.171-177
    • /
    • 2008
  • In this study, we investigated the induced defense response and protective effects against Stemphylium vesicarium by application of benzothiadiazole ($Bion^{(R)}$) and di-potassium phosphate salt $(K_2HPO_4)$ to onion. Onion leaves were sprayed with $Bion^{(R)}$ and $K_2HPO_4$, then inoculated 2 days later with a virulent strain of S. vesicarium under greenhouse conditions. Disease severity and activities of peroxidase (PO), polyphenoloxidase, phenylalanine ammonia-lyase (PAL) and phenol contents were evaluated in the treated leaf tissues. Reduction in the disease severity was observed in plants treated with $Bion^{(R)}$ and $K_2HPO_4$. Onion plants treated with $Bion^{(R)}$ and $K_2HPO_4$ and inoculated with the pathogen showed significantly higher PAL activity, PO activity, and phenol contents than inoculated water-treated plants 2 days after the treatment. In conclusion, the results of this study provide evidence that application of simple non-toxic chemical solutions as di-potassium phosphate and $Bion^{(R)}$ can control Stemphylium leaf blight of onion.

Winter Wheat Grain Yield Response to Fungicide Application is Influenced by Cultivar and Rainfall

  • Byamukama, Emmanuel;Ali, Shaukat;Kleinjan, Jonathan;Yabwalo, Dalitso N.;Graham, Christopher;Caffe-Treml, Melanie;Mueller, Nathan D.;Rickertsen, John;Berzonsky, William A.
    • The Plant Pathology Journal
    • /
    • 제35권1호
    • /
    • pp.63-70
    • /
    • 2019
  • Winter wheat is susceptible to several fungal pathogens throughout the growing season and foliar fungicide application is one of the strategies used in the management of fungal diseases in winter wheat. However, for fungicides to be profitable, weather conditions conducive to fungal disease development should be present. To determine if winter wheat yield response to fungicide application at the flowering growth stage (Feekes 10.5.1) was related to the growing season precipitation, grain yield from fungicide treated plots was compared to non-treated plots for 19 to 30 hard red winter wheat cultivars planted at 8 site years from 2011 through 2015. At all locations, Prothioconazole + Tebuconazole or Tebuconazole alone was applied at flowering timing for the fungicide treated plots. Grain yield response (difference between treated and non-treated) ranged from 66-696 kg/ha across years and locations. Grain yield response had a positive and significant linear relationship with cumulative rainfall in May through June for the mid and top grain yield ranked cultivars ($R^2=54%$, 78%, respectively) indicating that a higher amount of accumulated rainfall in this period increased chances of getting a higher yield response from fungicide application. Cultivars treated with a fungicide had slightly higher protein content (up to 0.5%) compared to non-treated. These results indicate that application of fungicides when there is sufficient moisture in May and June may increase chances of profitability from fungicide application.

Identification and Expression Analysis of Genes Induced in Response to Tomato chlorosis virus Infection in Tomato

  • Sahin-Cevik, Mehtap;Sivri, Emine Dogus;Cevik, Bayram
    • The Plant Pathology Journal
    • /
    • 제35권3호
    • /
    • pp.257-273
    • /
    • 2019
  • Tomato (Solanum lycopersicum) is one of the most widely grown and economically important vegetable crops in the world. Tomato chlorosis virus (ToCV) is one of the recently emerged viruses of tomato distributed worldwide. ToCV-tomato interaction was investigated at the molecular level for determining changes in the expression of tomato genes in response to ToCV infection in this study. A cDNA library enriched with genes induced in response to ToCV infection were constructed and 240 cDNAs were sequenced from this library. The macroarray analysis of 108 cDNAs revealed that the expression of 92 non-redundant tomato genes was induced by 1.5-fold or greater in response to ToCV infection. The majority of ToCV-induced genes identified in this study were associated with a variety of cellular functions including transcription, defense and defense signaling, metabolism, energy, transport facilitation, protein synthesis and fate and cellular biogenesis. Twenty ToCV-induced genes from different functional groups were selected and induction of 19 of these genes in response to ToCV infection was validated by RT-qPCR assay. Finally, the expression of 6 selected genes was analyzed in different stages of ToCV infection from 0 to 45 dpi. While the expression of three of these genes was only induced by ToCV infection, others were induced both by ToCV infection and wounding. The result showed that ToCV induced the basic defense response and activated the defense signaling in tomato plants at different stages of the infection. Functions of these defense related genes and their potential roles in disease development and resistance to ToCV are also discussed.

Effect of Sodium Chloride on Biology of Catenaria anguillulae

  • Gupta, R.C.;Singh, K.P.
    • Mycobiology
    • /
    • 제30권4호
    • /
    • pp.219-224
    • /
    • 2002
  • Growth studies of Catenaria anguillulae isolates in response to sodium chloride indicated that all the isolates grew in linseed oil-cake agar medium containing sodium chloride up to 1.0%. Medium with 1.5% sodium chloride, however, completely checked the growth of all the isolates. The size of zoosporangia greatly increased with abundant zoospore production in medium containing sodium chloride at 0.5%.

Plant defense signaling network study by reverse genetics and protein-protein interaction

  • Paek, Kyung-Hee
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.29-29
    • /
    • 2003
  • Incompatible plant-pathogen interactions result in the rapid cell death response known as hypersensitive response (HR) and activation of host defense-related genes. To understand the molecular and cellular mechanism controlling defense response better, several approaches including isolation and characterization of novel genes, promoter analysis of those genes, protein-protein interaction analysis and reverse genetic approach etc. By using the yeast two-hybrid system a clone named Tsipl, Tsil -interacting protein 1, was isolated whose translation product apparently interacted with Tsil, an EREBP/AP2 type DNA binding protein. RNA gel blot analysis showed that the expression of Tsipl was increased by treatment with NaCl, ethylene, salicylic acid, or gibberellic acid. Transient expression analysis using a Tsipl::smGFP fusion gene in Arabidopsis protoplasts indicated that the Tsipl protein was targeted to the outer surface of chloroplasts. The targeted Tsipl::smGFP proteins were diffused to the cytoplasm of protoplasts in the presence of salicylic acid (SA) The PEG-mediated co-transfection analysis showed that Tsipl could interact with Tsil in the nucleus. These results suggest that Tsipl-Tsil interaction might serve to regulate defense-related gene expression. Basically the useful promoters are valuable tools for effective control of gene expression related to various developmental and environmental condition.(중략)

  • PDF

Isoform-specific response of two GAPDH paralogs during bacterial challenge and metal exposure in mud loach (Misgurnus mizolepis: Cypriniformes) kidney and spleen

  • Cho, Young-Sun;Kim, Dong-Soo;Nam, Yoon-Kwon
    • 한국어병학회지
    • /
    • 제24권3호
    • /
    • pp.269-278
    • /
    • 2011
  • Gene expression of two glyceraldehyde-3-phosphate dehydrogenase (GAPDH) paralogs was examined during Edwardsiella tarda challenge and heavy metal exposures in mud loach (Misgurnus mizolepis; Cypriniformes) kidney and spleen. Transcription of the two mud loach GAPDH paralogs (mlGAPDH-1 and mlGAPDH-2) was significantly modulated by these stimulatory challenges in an isoform-dependent manner. Based on the real-time RT-PCR analysis, the mlGAPDH-2 transcripts were more preferentially induced by E. tarda challenge, whereas the mlGAPDH-1 transcripts were proven to show more inducibility in response to heavy metal exposure using Cd, Cu, Mn and Zn at $5{\mu}M$. Their isoform-specific response patterns were closely in accordance with the TF binding profiles in promoter and intron-1 of the two mlGAPDH isoforms, in which the mlGAPDH-2 has more binding sites for immune-related transcription factors than mlGAPDH-1 while the mlGAPDH-1 possesses exclusively metal responsive elements in its intron. Collectively, the mlGAPDHs are potentially involved in cellular pathways independent of glycolysis and the two GAPDH paralogs might undergo functional diversification or subfunctionalization at least at the transcription level.