• 제목/요약/키워드: pathogens bacteria

검색결과 968건 처리시간 0.033초

The effects of chitosan complex on the various bacteria

  • Lee, Hyun-Joo
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.227.1-227.1
    • /
    • 2003
  • To assess the effect of chitosan complex with metal ion on various pathogenic bacteria, the antibacterial activities were investigated. Arsenic, bismuth, calcium, iodine, iron, mercury, platinum, and silver were used as a metal ion. Staphylococcus aureus. Streptococcus mutans, Helicobacter pylori, Propionibacterium acnes and human saliva were examined. It was demonstrated that metal ions associated chitosan showed aggregation activities on various pathogens.

  • PDF

Identification of Bacterial Flora on Cellular Phones of Dentists

  • Kwon, Ye Won;Lee, Si Young
    • International Journal of Oral Biology
    • /
    • 제39권3호
    • /
    • pp.137-143
    • /
    • 2014
  • Dental professionals are repeatedly exposed to many microorganisms present in both blood and saliva. Thus, dental professionals are at a greater risk of acquiring and spreading infections, and the implementation of infections control guidelines is necessary. Cellular phones have become a necessary device for communicating in hospitals. Cellular phones contaminated with bacteria may serve as a fomite in the transmission of pathogens by the hands of medical personnel. Nevertheless, studies about rate and levels of bacterial contamination of cellular phones have been extremely limited with regards to dental personnel. The purpose of this study was to identify bacterial flora on the cellular phones of dentists by a molecular biological method using the 16S rRNA cloning and sequencing method. We acquired total 200 clones from dentists' cell phones and identified the bacterial species. Pseudomonas (34.6%), Lactobacillus (18.5%), Azomonas (11.5%), and Janthinobacterium (6%) were the dominant genera on dentists' cell phones. The oral bacteria identified were Anaerococcus lactolyticus, Gibbsiella dentisursi, Lactobacills leiae, Streptococcus mitis, Streptococcus oligofermentans, and Streptococcus sanguinis. Pathogenic bacteria and opportunistic pathogens such as Carnobacterium funditum, Raoultella planticola, Shigella flexneri, Lactobacillus iners, Staphylococcus aureus, and Staphylococcus epidermidis were also identified.

Growth Promoting Rhizospheric and Endophytic Bacteria from Curcuma longa L. as Biocontrol Agents against Rhizome Rot and Leaf Blight Diseases

  • Vinayarani, G.;Prakash, H.S.
    • The Plant Pathology Journal
    • /
    • 제34권3호
    • /
    • pp.218-235
    • /
    • 2018
  • Plant growth promoting rhizobacteria and endophytic bacteria were isolated from different varieties of turmeric (Curcuma longa L.) from South India. Totally 50 strains representing, 30 PGPR and 20 endophytic bacteria were identified based on biochemical assays and 16S rDNA sequence analysis. The isolates were screened for antagonistic activity against Pythium aphanidermatum (Edson) Fitzp., and Rhizoctonia solani Kuhn., causing rhizome rot and leaf blight diseases in turmeric, by dual culture and liquid culture assays. Results revealed that only five isolates of PGPR and four endophytic bacteria showed more than 70% suppression of test pathogens in both assays. The SEM studies of interaction zone showed significant ultrastructural changes of the hyphae like shriveling, breakage and desication of the pathogens by PGPR B. cereus (RBacDOB-S24) and endophyte P. aeruginosa (BacDOB-E19). Selected isolates showed multiple Plant growth promoting traits. The rhizome bacterization followed by soil application of B. cereus (RBacDOB-S24) showed lowest Percent Disease Incidence (PDI) of rhizome rot and leaf blight, 16.4% and 15.5% respectively. Similarly, P. aeruginosa (BacDOB-E19) recorded PDI of rhizome rot (17.5%) and leaf blight (17.7%). The treatment of these promising isolates exhibited significant increase in plant height and fresh rhizome yield/plant in comparison with untreated control under greenhouse condition. Thereby, these isolates can be exploited as a potential biocontrol agent for suppressing rhizome rot and leaf blight diseases in turmeric.

개의 비루에서 분리한 원인균의 항생제 내성 (Antibiotic Resistance of Bacterial Isolates from Nasal Discharges of Dogs with Respiratory Diseases)

  • 김문선;정종태;강태영;윤영민;이주명;이두식;손원근
    • 한국임상수의학회지
    • /
    • 제21권2호
    • /
    • pp.133-139
    • /
    • 2004
  • Bacterial pathogens were isolated from 36 dogs with respiratory signs, that were submitted to Veterinary Clinics in Jeju, including Veterinary Medical Teaching Hospital in Cheju National University. Of 36 isolates, 16 (44.4%) bacterial pathogens were Gram-positive and 20 (55.6%) were Gram-negative. Gram-positive bacteria identified with API Staph were 12 S. intermedius (33.3%), 2 S. aureus (5.6%), 1 S. haemolyticum (2.8%), and 1 S. xylosus (2.8%). Gram-negative organisms identified with API 20E or API NE included 8 Bordetella bronchiseptica (22.2%), 6 Escherichia coli (16.7%), 4 Pasteurella spp. (11.1%), 1 Enterobacter intermedius (2.8%), and 1 Oligella ureolytica (2.8%). Both Staphylococcus spp. isolates and Gram-negative pathogens were resistant to one or more antibiotics, including ampicillin (AM), amoxicillin/clavulanic acid (AMC), chloramphenicol (C), cefazolin (CZ), erythromycin (E), gentamicin (GM), kanamycin (K), lincomycin (L), oxacillin (OX), trimethoprim/sulfamethoxazole (SXT), and tetracycline (TE). All Staphylococcus spp. were susceptible to AMC, OX and VA, while many isolates were highly resistant to L (87.5%), E (68.8%), P (62.5%), and AM (56.3%). Antibiotic-resistant patterns of staphylococcal isolates were shown ranges from single to 9-resistant patterns. Resistant rates to antibiotics of Gram-negative bacteria were usually higher than those of Staphylococcus spp. in this study. Most Gram-negative bacteria were highly resistant to L (90.0%), AM (85.0%), E (85.0%), P (85.0%), OX (80.0%), and CZ (75.0%). B. bronchiseptica isolates showed 5 to 8 antibiotics-resistant patterns and Pasteurella spp., 2 to 8-resistant patterns. In particular, all 6 E. coli isolates were resistant to more than 9 different kinds of antibiotics, including one strain resistant to all antibiotics tested.

항균성 동치미액의 첨가에 의한 냉면국물 중의 Listeria monocytogenes 및 Escherichia coli O157:H7 생육억제 (Growth Inhibition of Listeria monocytogenes and Escherichia coli O157:H7 in Naengmyon-Broth by addition of Antibacterial Dongchimi-Juice)

  • 박상희
    • 한국식품영양학회지
    • /
    • 제12권2호
    • /
    • pp.133-141
    • /
    • 1999
  • Juice of Dongchime a Korean traditional vegetable food fermented with lactic acid bacteria has been traditionary used as broth for Naengmyon a Korean cold noodles with broth. This study was carried out to demonstrate the growth inhibition of two food born pathogens Listeria monocytogenes and Escherichia coli O157:H7 in Naengmyon-broth containing Dongchimi-juice fermented with high antibacterial lactic acid bacteria Lactobacillus homohiochii B21 and Leuconostoc mesenteroides C16. Naengmyon-broth were made with beef broth and Dongchimi-juice fermented with lactic acid bacteria and the changes in viable cell counts of the inoculated pathogens in Naengmyon-broths were investigated during storage at 2$0^{\circ}C$ and 1$0^{\circ}C$. In Naengmyon-broth of 100% Dongchimi-juice stored at 2$0^{\circ}C$ the numbers of Listeria monocyto-genes and Escherichia coli O157:H7 were rapidly decreased from 106CFU/ml to 106CFU/ml in 8 hours and 40 hours respectively. In Naengmyon-broth containing 50% Dongchimi-juice their numbers were also rapidly decreased though the decreasing rates were not so fast as those in 1005 Dongchimi-juice. In Naengmyon-broth containing 10% Dongchimi-juice the growths of the two pathogens were markedly inhibited compared with those in 100% beef broth though some growths were occurred in early phase. But in Naengmyon-broth of 100% beef broth their growths were very fast from early. Antibacterial ac-tivity of the Dongchimi-juice was more distinct at 2$0^{\circ}C$ than at 1$0^{\circ}C$ and was more active against Listeria monocytogenes than against Escherichia coli 157:H7.

  • PDF

복합 박테리오신의 항균활성 및 축산식품 저장성 증진 효과 (Antimicrobial Effects of a Bacteriocin Mixture from Lactic Acid Bacteria against Foodborne Pathogens)

  • 한경식;오세종;문용일
    • 한국축산식품학회지
    • /
    • 제22권2호
    • /
    • pp.164-171
    • /
    • 2002
  • 박테리오신을 생산하는 9종의 유산균 배양액으로부터 ammonium sulfate를 첨가하여 제조된 각각의 조박테리오신을 혼합하여 복합박테리오신용액을 제조하였다. 복합박테리오신의 항균 활성은 단일 박테리오신보다 우수하였으며 항균 범위 또한 넓어짐을 알 수 있었고 단일 박테리오신에 대하여 저항성을 나타내는 Listeria monocytogenes의 생육을 저해하는 것으로 나타났다. 또한, 복합박테리오신은 pH와 열에강한 안정성을 보여 식품 가공 중에도 이용이 가능한 것으로 나타났다. 복합박테리오신을 프랑크소세지, 모짜렐라 치즈 및 돈육등심근에 첨가한 후 저장기간별 일반세균수의 변화를 조사한 결과, 대조구에 비해 유의적인 감소현상을 나타내었고 저장 28일 경과 후에는 모든 식품에서 1/10 또는 1/100 정도로 식품내 총세균이 억제되었다. 또한, 저장기간 중 VBN의 함량을 조사한 결과 돈육등심근과 모짜렐라 치즈의 경우 14일 이후부터 박테리오신 처리구가 대조구에 비해 유의적으로 낮은 수치를 보여주었다.

Isolation of Rhizobacteria in Jeju Island Showing Anti-Fungal Effect against Fungal Plant Pathogens

  • Lee, Chung-Sun;Kim, Ki-Deok;Hyun, Jae-Wook;Jeun, Yong-Chull
    • Mycobiology
    • /
    • 제31권4호
    • /
    • pp.251-254
    • /
    • 2003
  • To select active bacterial strains to control plant diseases, 57 bacterial strains were isolated from the rhizosphere of the plants growing in various areas such as coast, middle and top of Halla Mountain in Jeju Island. Anti-fungal effect of isolated bactrial strains was tested in vitro by incubating in potato dextrose agar with isolates of four fungal plant pathogens Rhizoctonia solani, Fusarium oxysporum, Colletotrichum gloeosporioides and C. orbiculare, respectively. Thirty-four bacterial strains inhibited the hyphal growth of the plant pathogens, from which 17 strains inhibited one of the tested fungi, 10 strains two fungi, six strains three and a strain TRL2-3 inhibited all of the tested fungi. Some bacterial strains could inhibit weakly the hyphal growth of the plant pathogens, whereas some did very strongly with apparent inhibition zone between the plant pathogens and bacterial strains indicating the unfavorable condition for hyphal growth. Although there was no apparent inhibition zone, some bacterial strains showed a strong suppression of hyphal growth of plant pathogens. Especially, the inhibition by TRL2-3 was remarkably strong in all cases of the tested plant pathogens in this study that could be a possible candidate for biological control of various plant diseases.

DNA Damage Triggers the Activation of Immune Response to Viral Pathogens via Salicylic Acid in Plants

  • Hwi-Won Jeong;Tae Ho Ryu;Hyo-Jeong Lee;Kook-Hyung Kim;Rae-Dong Jeong
    • The Plant Pathology Journal
    • /
    • 제39권5호
    • /
    • pp.449-465
    • /
    • 2023
  • Plants are challenged by various pathogens throughout their lives, such as bacteria, viruses, fungi, and insects; consequently, they have evolved several defense mechanisms. In addition, plants have developed localized and systematic immune responses due to biotic and abiotic stress exposure. Animals are known to activate DNA damage responses (DDRs) and DNA damage sensor immune signals in response to stress, and the process is well studied in animal systems. However, the links between stress perception and immune response through DDRs remain largely unknown in plants. To determine whether DDRs induce plant resistance to pathogens, Arabidopsis plants were treated with bleomycin, a DNA damage-inducing agent, and the replication levels of viral pathogens and growth of bacterial pathogens were determined. We observed that DDR-mediated resistance was specifically activated against viral pathogens, including turnip crinkle virus (TCV). DDR increased the expression level of pathogenesis-related (PR) genes and the total salicylic acid (SA) content and promoted mitogen-activated protein kinase signaling cascades, including the WRKY signaling pathway in Arabidopsis. Transcriptome analysis further revealed that defense-and SA-related genes were upregulated by DDR. The atm-2atr-2 double mutants were susceptible to TCV, indicating that the main DDR signaling pathway sensors play an important role in plant immune responses. In conclusion, DDRs activated basal immune responses to viral pathogens.

A Multiplex PCR Assay for the Detection of Food-borne Pathogens in Meat Products

  • Kim, Hyoun-Wook;Kim, Ji-Hyun;Rhim, Seong-Ryul;Lee, Kyung-A;Kim, Cheon-Jei;Paik, Hyun-Dong
    • 한국축산식품학회지
    • /
    • 제30권4호
    • /
    • pp.590-596
    • /
    • 2010
  • Meat and meat products are a potential source of food-borne pathogens, including Staphylococcus aureus, Salmonella spp., Escherichia coli O157:H7, and Bacillus cereus. A sensitive and specific PCR assay for the detection of these pathogens in meat and meat products was developed in this study, as part of a broader effort to reduce the potential health hazards posed by these pathogens. Initially, PCR conditions were standardized with purified DNA. Under standard conditions, the detection level for PCR was as low as 10 pg of purified bacterial DNA. After overnight growth of bacteria in a broth medium, as few as $10^2$ CFU of bacteria were detected by PCR assay. The primers employed in the PCR assay were found to be highly specific for individual organisms, and evidenced no cross-reactivity with heterologous organisms. Additionally, the multiplex PCR assays also amplified some target genes from the four pathogens, and multiplex amplification was obtained from as little as 10 pg of DNA, thus illustrating the excellent specificity and high sensitivity of the assay. In conclusion, this PCR-based technique provides a sensitive and specific method for the detection of S. aureus, Salmonella spp., E. coli O157:H7, and B. cereus in meat and meat products.

친환경 제제로부터 식물병원균에 대한 길항 미생물의 선발 (Selection of Antagonistic Microorganisms against Plant Pathogens from Eco-friendly Formulations)

  • 강근혜;차재율;허빛나;이옥순;이용복;곽연식
    • 한국환경농학회지
    • /
    • 제31권1호
    • /
    • pp.68-74
    • /
    • 2012
  • BACKGROUND: Some microorganisms extant in nature have ability to suppress various plant pathogens, and also can promote plant growth. Thus microorganisms are such great source of antimicrobial agents to develop antagonistic microorganism production and eco-friendly crop management. We isolated the microorganisms in various eco-friendly formulations. The suppressive abilities against plant pathogens have been characterized in vitro level. METHODS AND RESULTS: The indigenous microorganisms have been isolated from Cooked rice, Black sugar, Rice Bran, and Red clay using dilution plating method. Population of bacteria and fungi were above 107 in the all formulations. We isolated and pure cultured the microorganisms based on morphological characteristics. Three major plant pathogens (Fusarium oxysporum, Rhizoctonia solani, Phytophthora capsici) have been used to select antagonistic microorganisms. Total 20 bacteria and 9 fungi showed the pathogen growth suppression ability in vitro condition. The selected microorganisms were identified by ITS sequence similarity. CONCLUSION: All tested eco-friendly formulations contained high-density of the microorganisms. Among the isolated microorganisms, Bacillus spp. and Streptomyces spp. showed the most effective antifungal activity against the plant pathogens such as F. oxysporum, R. solani, and P. capsici. Among the selected fungi Trichoderma sp. demonstrated antifungal activity. Our results suggest that the currently adapted eco-friendly formulations might useful for sustain agricultural system.