• Title/Summary/Keyword: pathogenic variants

Search Result 46, Processing Time 0.027 seconds

Genome Architecture and Its Roles in Human Copy Number Variation

  • Chen, Lu;Zhou, Weichen;Zhang, Ling;Zhang, Feng
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.136-144
    • /
    • 2014
  • Besides single-nucleotide variants in the human genome, large-scale genomic variants, such as copy number variations (CNVs), are being increasingly discovered as a genetic source of human diversity and the pathogenic factors of diseases. Recent experimental findings have shed light on the links between different genome architectures and CNV mutagenesis. In this review, we summarize various genomic features and discuss their contributions to CNV formation. Genomic repeats, including both low-copy and high-copy repeats, play important roles in CNV instability, which was initially known as DNA recombination events. Furthermore, it has been found that human genomic repeats can also induce DNA replication errors and consequently result in CNV mutations. Some recent studies showed that DNA replication timing, which reflects the high-order information of genomic organization, is involved in human CNV mutations. Our review highlights that genome architecture, from DNA sequence to high-order genomic organization, is an important molecular factor in CNV mutagenesis and human genomic instability.

Red Pepper Anthracnose: Colletotrichum gloeosporioides, It's Cultural Variations and Pathogenicity (고추 탄저병균의 배양형 변이 그리고 병원성 차이)

  • Im, Jin-Hyun;Lee, Soon-Gu
    • Research in Plant Disease
    • /
    • v.10 no.3
    • /
    • pp.203-208
    • /
    • 2004
  • The dominant isolates of Colletotrichum gloeosporioides from the red pepper anthracnose(both of the diseased plants and debris) was more pathogenic than the isolates of Colletotrichum acutatum of minorly isolated from Gyeong-buk, Korea. There were both of the G and R strains of cultural variants of Colletotrichum gloeosporioides, the G strain was more pathogenic than R strain. The cultivars of red-pepper, cv. 'Kumsegi' was the most susceptible and cv. 'papet' was the least susceptible in the pathogenicity test. The isolates of Colletotrichum gloeosporioides from other host plant such on sesame, safflower, yam, strawberry could infect to the red pepper plant also.

Genetic analysis of the postsynaptic transmembrane X-linked neuroligin 3 gene in autism

  • Hegde, Rajat;Hegde, Smita;Kulkarni, Suyamindra S.;Pandurangi, Aditya;Gai, Pramod B.;Das, Kusal K.
    • Genomics & Informatics
    • /
    • v.19 no.4
    • /
    • pp.44.1-44.9
    • /
    • 2021
  • Autism is a complex neurodevelopmental disorder, the prevalence of which has increased drastically in India in recent years. Neuroligin is a type I transmembrane protein that plays a crucial role in synaptogenesis. Alterations in synaptic genes are most commonly implicated in autism and other cognitive disorders. The present study investigated the neuroligin 3 gene in the Indian autistic population by sequencing and in silico pathogenicity prediction of molecular changes. In total, 108 clinically described individuals with autism were included from the North Karnataka region of India, along with 150 age-, sex-, and ethnicity-matched healthy controls. Genomic DNA was extracted from peripheral blood, and exonic regions were sequenced. The functional and structural effects of variants of the neuroligin 3 protein were predicted. One coding sequence variant (a missense variant) and four non-coding variants (two 5'-untranslated region [UTR] variants and two 3'-UTR variants) were recorded. The novel missense variant was found in 25% of the autistic population. The C/C genotype of c.551T>C was significantly more common in autistic children than in controls (p = 0.001), and a significantly increased risk of autism (24.7-fold) was associated with this genotype (p = 0.001). The missense variant showed pathogenic effects and high evolutionary conservation over the functions of the neuroligin 3 protein. In the present study, we reported a novel missense variant, V184A, which causes abnormal neuroligin 3 and was found with high frequency in the Indian autistic population. Therefore, neuroligin is a candidate gene for future molecular investigations and functional analysis in the Indian autistic population.

High Level of Sequence-Variation in Sacbrood Virus (SBV) from Apis mellifera

  • Truong, A-Tai;Kim, Jung-Min;Lim, Su-Jin;Yoo, Mi-Sun;Cho, Yun Sang;Yoon, Byoung-Su
    • Journal of Apiculture
    • /
    • v.32 no.4
    • /
    • pp.281-293
    • /
    • 2017
  • Sacbrood virus (SBV) is one of the main pathogenic RNA viruses of honeybee. SBV is found worldwide and many local strains have been reported, such as kSBV, cSBV, and wSBV. In this study, SBV-specific DNA fragments were cloned and sequenced by reverse-transcription PCR from 4 populations of A. mellifera, 4 sequences from 1 population belonged to the 2134D51 genotype (349 nucleotides, nt) and 12 sequences from 3 populations belonged to the 2100D0 genotype (400 nt) among the 16 determined sequences. A total of 87 points of mismatches were found by comparison with the most similar sequences in GenBank. Seventeen single-nucleotide polymorphisms (SNP) were detected, and 6 SNP-patterns in the 2100D0 genotype and 2 SNP-patterns in the 2134D51 genotype were identified based on SNP positions. In SNP-pattern 2, 10 SNPs were detected, but only 2 SNPs were found in SNP-pattern7. Meanwhile, one SNP-pattern was found from one RNA-sample, multi SNP-patterns were detected from other RNA-samples. Large numbers of SNP variants indicate that vast numbers of point-mutations on SBV have occurred since SBV invaded Korea and that SNP smay have been introduced individually over time. Thorough analysis of SNP variants will not only define the local infection-route, but also the relationships between SNP-pattern and SBV-pathogenic abilities.

A Case of Pseudodeficiency in a Potential Late Onset Pompe Disease Carrier, with Double Dual Variant, Each in cis Formation (Pseudodeficiency 및 potential late onset Pompe disease 보인자로 확인된 cis형 dual variant 돌연변이 두 개를 가진 여아 1례)

  • Seung Ho, Kim;Goo Lyeon, Kim;Young Pyo, Chang;Dong Hwan, Lee
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.22 no.2
    • /
    • pp.58-62
    • /
    • 2022
  • Pompe disease (PD) is an autosomal recessive genetic disorder caused by a deficiency of the lysosomal enzyme acid α-glucosidase (GAA). It is easy to hastily diagnose as patients if they have two pathogenic variants. Clinical pathologists misdiagnosed our infant and her mother as PD. Here, we report a case of pseudodeficiency in a potential late-onset Pompe disease (LOPD) carrier with a double dual variant, each in cis formation in a 3-month infant. The person who has two pathogenic variants was diagnosed as a carrier, not a patient. It was first reported in Korea. The patient had: two likely pathogenic heterozygous mutations on exon #4: c.752C>T (p.Ser251Leu), c.761C>T (p.Ser254Leu), and a heterozygous mutation on exon #12: c.1726G>A (p.Gly576Ser), also with a heterozygous mutation on exon #15: c.2065G>A (p.Glu689Lys). By presenting this case we emphasize the possibility of cis formation of genes which may cause pseudodeficiency, and potential LOPD carrier form. Hereby we suggest that thorough evaluation of GAA gene is essential among whom initially diagnosed as PD.

Presentation of potential genes and deleterious variants associated with non-syndromic hearing loss: a computational approach

  • Ray, Manisha;Rath, Surya Narayan;Sarkar, Saurav;Sable, Mukund Namdev
    • Genomics & Informatics
    • /
    • v.20 no.1
    • /
    • pp.5.1-5.10
    • /
    • 2022
  • Non-syndromic hearing loss (NSHL) is a common hereditary disorder. Both clinical and genetic heterogeneity has created many obstacles to understanding the causes of NSHL. The present study has attempted to ravel the genetic aetiology in NSHL progression and to screen out potential target genes using computational approaches. The reported NSHL target genes (2009-2020) have been studied by analyzing different biochemical and signaling pathways, interpretation of their functional association network, and discovery of important regulatory interactions with three previously established miRNAs in the human inner ear as well as in NSHL such as miR-183, miR-182, and miR-96. This study has identified SMAD4 and SNAI2 as the most putative target genes of NSHL. But pathogenic and deleterious non-synonymous single nucleotide polymorphisms discovered within SMAD4 is anticipated to have an impact on NSHL progression. Additionally, the identified deleterious variants in the functional domains of SMAD4 added a supportive clue for further study. Thus, the identified deleterious variant i.e., rs377767367 (G491V) in SMAD4 needs further clinical validation. The present outcomes would provide insights into the genetics of NSHL progression.

Unusual or Uncommon Histology of Gastric Cancer

  • Jinho Shin;Young Soo Park
    • Journal of Gastric Cancer
    • /
    • v.24 no.1
    • /
    • pp.69-88
    • /
    • 2024
  • This review comprehensively examines the diverse spectrum of gastric cancers, focusing on unusual or uncommon histology that presents significant diagnostic and therapeutic challenges. While the predominant form, tubular adenocarcinoma, is well-characterized, this review focuses on lesser-known variants, including papillary adenocarcinoma, micropapillary carcinoma, adenosquamous carcinoma, squamous cell carcinoma (SCC), hepatoid adenocarcinoma, gastric choriocarcinoma, gastric carcinoma with lymphoid stroma, carcinosarcoma, gastroblastoma, parietal cell carcinoma, oncocytic adenocarcinoma, Paneth cell carcinoma, gastric adenocarcinoma of the fundic gland type, undifferentiated carcinoma, and extremely well-differentiated adenocarcinoma. Although these diseases have different nomenclatures characterized by distinct histopathological features, these phenotypes often overlap, making it difficult to draw clear boundaries. Furthermore, the number of cases was limited, and the unique histopathological nature and potential pathogenic mechanisms were not well defined. This review highlights the importance of understanding these rare variants for accurate diagnosis, effective treatment planning, and improving patient outcomes. This review emphasizes the need for ongoing research and case studies to enhance our knowledge of these uncommon forms of gastric cancer, which will ultimately contribute to more effective treatments and better prognostic assessments. This review aimed to broaden the pathological narrative by acknowledging and addressing the intricacies of all cancer types, regardless of their rarity, to advance patient care and improve prognosis.

BRCA1 Gene Mutation Screening for the Hereditary Breast and/or Ovarian Cancer Syndrome in Breast Cancer Cases: a First High Resolution DNA Melting Analysis in Indonesia

  • Mundhofir, Farmaditya EP;Wulandari, Catharina Endah;Prajoko, Yan Wisnu;Winarni, Tri Indah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1539-1546
    • /
    • 2016
  • Specific patterns of the hereditary breast and ovarian cancer (HBOC) syndrome are related to mutations in the BRCA1 gene. One hundred unrelated breast cancer patients were interviewed to obtain clinical symptoms and signs, pedigree and familial history of HBOC syndrome related cancer. Subsequently, data were calculated using the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA) risk prediction model. Patients with high score of BOADICEA were offered genetic testing. Eleven patients with high score of BOADICEA, 2 patients with low score of BOADICEA, 2 patient's family members and 15 controls underwent BRCA1 genetic testing. Mutation screening using PCR-HRM was carried out in 22 exons (41 amplicons) of BRCA1 gene. Sanger sequencing was subjected in all samples with aberrant graph. This study identified 10 variants in the BRCA1 gene, consisting of 6 missense mutations (c.1480C>A, c.2612C>T, c.2566T>C, c.3113A>G, c.3548 A>G, c.4837 A>G), 3 synonymous mutations (c.2082 C>T, c.2311 T>C and c.4308T>C) and one intronic mutation (c.134+35 G>T). All variants tend to be polymorphisms and unclassified variants. However, no known pathogenic mutations were found.

Case Report on NTBC Treatment of Type 1 Tyrosinemia Diagnosed through Newborn Screening (신생아 선별검사를 통해 진단된 1형 타이로신혈증의 NTBC 치료 사례 보고)

  • Ji Eun Jeong;Hwa Young Kim;Jung Min Ko
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.23 no.2
    • /
    • pp.39-44
    • /
    • 2023
  • Hereditary tyrosinemia type 1 (HT-1) is a metabolic disorder caused by biallelic pathogenic variants in the fumarylacetoacetate hydrolase (FAH) gene, which impairs the function of the FAH enzyme, resulting in the accumulation of tyrosine's toxic metabolites in hepatocytes and renal tubular cells. As a consequence, individuals with HT-1 exhibit symptomatic manifestations. Rapid diagnosis and treatment of HT-1 can prevent short-term death and long-term complications. A 15-day-old boy presented to the outpatient department with elevated levels of tyrosine on his newborn screening tests conducted at the age of 3 and 10 days, respectively. Further blood tests revealed increased levels of alpha-fetoprotein and amino acids including tyrosine and threonine. Urine organic acid tests indicated a significant elevation in tyrosine metabolites, as well as the presence of succinylacetone (SA), which led to the diagnosis of HT-1. Two pathogenic and likely pathogenic variants of FAH compatible with HT-1 were also detected. He began a tyrosine-restricted diet at one month old and received nitisinone (NTBC) at two months old. With continued treatment, the patient's initially elevated AFP level, detection of SA in the urine, and mild hepatomegaly showed improvement. During four years and seven months of treatment, there were no exceptional complications apart from an increase in tyrosine levels and a delay in speech. We report a case of tyrosinemia type 1 detected through newborn screening, treated with dietary restriction and NTBC, with a good prognosis.

  • PDF

Prenatal molecular diagnosis and carrier detection of Duchenne muscular dystrophy in Korea

  • Kang, Min Ji;Seong, Moon-Woo;Cho, Sung Im;Park, Joong Shin;Jun, Jong Kwan;Park, Sung Sup
    • Journal of Genetic Medicine
    • /
    • v.17 no.1
    • /
    • pp.27-33
    • /
    • 2020
  • Purpose: Duchenne muscular dystrophy (DMD) is the most common lethal muscular dystrophy and is caused by the genetic variants of DMD gene. Because DMD is X-linked recessive and shows familial aggregates, prenatal diagnosis is an important role in the management of DMD family. We present our experience of prenatal molecular diagnosis and carrier detection based on multiplex polymerase chain reaction (PCR), multiplex ligation-dependent probe amplification (MLPA), and linkage analysis. Materials and Methods: During study period, 34 cases of prenatal diagnosis and 21 cases of carrier detection were performed at the Seoul National University Hospital. Multiplex PCR and MLPA was used to detect the exon deletions or duplications. When the DMD pathogenic variant in the affected males is unknown and no DMD pathogenic variant is detected in atrisk females, linkage analysis was used. Results: The prenatal molecular diagnosis was offered to 34 fetuses. Twenty-five fetuses were male and 6 fetuses (24.0%) were affected. Remaining cases had no pathogenic mutation. We had 24 (80.0%) cases of known proband results; exon deletion mutation in 19 (79.2%) cases and duplication in 5 (20.8%) cases. Linkage analysis was performed in 4 cases in which 2 cases (50.0%) were found to be affected. In the carrier testing, among 21 cases including 15 cases of mother and 6 cases of female relative, 9 (42.9%) cases showed positive results and 12 (57.1%) cases showed negative results. Conclusion: Prenatal molecular diagnosis and carrier detection of DMD are effective and feasible. They are useful in genetic counseling for DMD families.