• Title/Summary/Keyword: pathogenic factor

Search Result 240, Processing Time 0.021 seconds

Carbamoyl Phosphate Synthase Subunit CgCPS1 Is Necessary for Virulence and to Regulate Stress Tolerance in Colletotrichum gloeosporioides

  • Mushtaq, Aamar;Tariq, Muhammad;Ahmed, Maqsood;Zhou, Zongshan;Ali, Imran;Mahmood, Raja Tahir
    • The Plant Pathology Journal
    • /
    • v.37 no.3
    • /
    • pp.232-242
    • /
    • 2021
  • Glomerella leaf spot (GLS) is a severe infectious disease of apple whose infective area is growing gradually and thus poses a huge economic threat to the world. Different species of Colletotrichum including Colletotrichum gloeosporioides are responsible for GLS. For efficient GLS control, it is important to understand the mechanism by which the cruciferous crops and C. gloeosporioides interact. Arginine is among one of the several types of amino acids, which plays crucial role in biochemical and physiological functions of fungi. The arginine biosynthesis pathway involved in virulence among plant pathogenic fungi is poorly understood. In this study, CgCPS1 gene encoding carbamoyl phosphate synthase involved in arginine biosynthesis has been identified and inactivated experimentally. To assess the effects of CgCPS1, we knocked out CgCPS1 in C. gloeosporioides and evaluated its effects on virulence and stress tolerance. The results showed that deletion of CgCPS1 resulted in loss of pathogenicity. The ∆cgcps1 mutants showed slow growth rate, defects in appressorium formation and failed to develop lesions on apple leaves and fruits leading to loss of virulence while complementation strain (CgCPS1-C) fully restored its pathogenicity. Furthermore, mutant strains showed extreme sensitivity to high osmotic stress displaying that CgCPS1 plays a vital role in stress response. These findings suggest that CgCPS1 is major factor that mediates pathogenicity in C. gloeosporioides by encoding carbamoyl phosphate that is involved in arginine biosynthesis and conferring virulence in C. gloeosporioides.

Lactobacillus casei Zhang Prevents Jejunal Epithelial Damage to Early-Weaned Piglets Induced by Escherichia coli K88 via Regulation of Intestinal Mucosal Integrity, Tight Junction Proteins and Immune Factor Expression

  • Wang, Yuying;Yan, Xue;Zhang, Weiwei;Liu, Yuanyuan;Han, Deping;Teng, Kedao;Ma, Yunfei
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.6
    • /
    • pp.863-876
    • /
    • 2019
  • Farm animals such as piglets are often affected by environmental stress, which can disturb the gut ecosystem. Antibiotics were commonly used to prevent diarrhea in weaned piglets, but this was banned by the European Union due to the development of antibiotic resistance. However, the use of probiotics instead of antibiotics may reduce the risk posed by pathogenic microorganisms and reduce the incidence of gastrointestinal diseases. Therefore, this study was conducted to investigate the effects of Lactobacillus casei Zhang on the mechanical barrier and immune function of early-weaned piglets infected using Escherichia coli K88 based on histomorphology and immunology. Fourteen-day-old weaned piglets were divided into a control group and experimental groups that were fed L. casei Zhang and infected with E. coli K88 with or without prefeeding and/or postfeeding of L. casei Zhang. The L. casei Zhang dose used was $10^7CFU/g$ diet. Jejunum segments were obtained before histological, immunohistochemical, and western blot analyses were performed. In addition, the relative mRNA expression of toll receptors and cytokines was measured. Piglets fed L. casei Zhang showed significantly increased jejunum villus height, villus height-crypt depth ratio, muscle thickness, and expression of proliferating cell nuclear antigen and tight junction proteins ZO-1 and occludin. The use of L. casei Zhang effectively reduced intestinal inflammation after infection. We found that L. casei Zhang feeding prevented the jejunum damage induced by E. coli K88, suggesting that it may be a potential alternative to antibiotics for preventing diarrhea in early-weaned piglets.

First Report of Fusarium oxysporum Causing Damping-off on Paprika in Korea (Fusarium oxysporum에 의한 파프리카 잘록병)

  • Park, Mi-Jeong;Back, Chang-Gi;Seo, Yunhee;Park, Jong-Han
    • Research in Plant Disease
    • /
    • v.25 no.2
    • /
    • pp.94-97
    • /
    • 2019
  • In February 2019, a damping-off disease occurred at the seedling stage of paprika in a commercial nursery located in Cheorwon, Korea. A species of Fusarium was isolated from the diseased plant and it was identified as Fusarium oxysporum based on morphological characteristics and nucleotide sequence data of translation elongation factor $1-{\alpha}$ and the largest subunit of RNA polymerase. The isolate obtained was revealed to be pathogenic to the host plant through pathogenicity tests, and the reisolation of the pathogen confirmed Koch's postulates. This is the first report of damping-off caused by Fusarium oxysporum on paprika in Korea.

The Bcl-2/Bcl-xL Inhibitor ABT-263 Attenuates Retinal Degeneration by Selectively Inducing Apoptosis in Senescent Retinal Pigment Epithelial Cells

  • Wonseon Ryu;Chul-Woo Park;Junghoon Kim;Hyungwoo Lee;Hyewon Chung
    • Molecules and Cells
    • /
    • v.46 no.7
    • /
    • pp.420-429
    • /
    • 2023
  • Age-related macular degeneration (AMD) is one of the leading causes of blindness in elderly individuals. However, the currently used intravitreal injections of anti-vascular endothelial growth factor are invasive, and repetitive injections are also accompanied by a risk of intraocular infection. The pathogenic mechanism of AMD is still not completely understood, but a multifactorial mechanism that combines genetic predisposition and environmental factors, including cellular senescence, has been suggested. Cellular senescence refers to the accumulation of cells that stop dividing due to the presence of free radicals and DNA damage. Characteristics of senescent cells include nuclear hypertrophy, increased levels of cell cycle inhibitors such as p16 and p21, and resistance to apoptosis. Senolytic drugs remove senescent cells by targeting the main characteristics of these cells. One of the senolytic drugs, ABT-263, which inhibits the antiapoptotic functions of Bcl-2 and Bcl-xL, may be a new treatment for AMD patients because it targets senescent retinal pigment epithelium (RPE) cells. We proved that it selectively kills doxorubicin (Dox)-induced senescent ARPE-19 cells by activating apoptosis. By removing senescent cells, the expression of inflammatory cytokines was reduced, and the proliferation of the remaining cells was increased. When ABT-263 was orally administered to the mouse model of senescent RPE cells induced by Dox, we confirmed that senescent RPE cells were selectively removed and retinal degeneration was alleviated. Therefore, we suggest that ABT-263, which removes senescent RPE cells through its senolytic effect, has the potential to be the first orally administered senolytic drug for the treatment of AMD.

Peony Stem Rots by Neopestalotiopsis clavispora and Sclerotinia sclerotiorum, and Antifungal Propineb and Bacillus siamensis H30-3 against the Two Fungal Species

  • Jeum Kyu Hong;Young Hee Lee;Yeon Sook Jo;Su Min Kim;Seoung Bin Lee;Juyeoung Um;Kyoung-Ok Choi;Mee Kyung Sang;Chung-Ryul Jung;Chang-Jin Park;Sung Hwan Choi
    • Research in Plant Disease
    • /
    • v.30 no.2
    • /
    • pp.114-123
    • /
    • 2024
  • In July 2022, stem rot symptom was found in a peony plant grown in a pot under a greenhouse at Jinju, Gyeongnam Province, South Korea. Two fungal species were isolated from the infected peony stems and cultured on 1/2-strength potato dextrose agar for identification. The morphological characteristics of the fungal isolates were examined, and nucleotide sequences of the internal transcribed spacer region, β-tubulin and translation elongation factor 1-α were analysed. The pathogenicity of the two isolates was confirmed in detached peony leaves, according to Koch's postulates. To our knowledge, this is the report of Neopestalotiopsis clavispora and Sclerotinia sclerotiorum as the causal agents of peony stem rots. Antifungal activity of chemical fungicide propineb and rhizobacterium Bacillus siamensis H30-3 was shown against the two plant pathogenic fungi N. clavispora and S. sclerotiorum.Unidentified diffusible and volatile compounds from B. siamensis H30-3 could suppress in vitro mycelial growths of N. clavispora JJ 8-2-1 and S. sclerotiorum JJ 8-2-2.

Immunization of mice with chimeric protein-loaded aluminum hydroxide and selenium nanoparticles induces reduction of Brucella melitensis infection in mice

  • Tahereh Goudarzi;Morteza Abkar;Zahra Zamanzadeh;Mahdi Fasihi-Ramandi
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.4
    • /
    • pp.304-312
    • /
    • 2023
  • Purpose: Due to the many problems with commercially available vaccines, the production of effective vaccines against brucellosis is a necessity. The aim of this study was to evaluate the immune responses caused by the chimeric protein consisting of trigger factor, Bp26, and Omp31 (TBO) along with aluminum hydroxide (AH/TBO) and selenium (Se/TBO) nanoparticles (NPs) as adjuvants in mouse model. Materials and Methods: Recombinant antigen expression was induced in Escherichia coli BL21 (DE3) bacteria using IPTG (isopropyl-d-1-thiogalactopyranoside). Purification and characterization of recombinant protein was conducted through NiFe3O4 NPs, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and Western blot. NP characteristics, including morphology and particle size, were measured in vitro. The recombinant TBO was loaded on to AH and Se NPs and were administered subcutaneously. After mice immunization, measurement of antibody titter and protection assay was performed. Results: The average sizes of AH and Se NPs were about 60 nm and 150 nm, respectively. The enzyme-linked immunosorbent assay results showed that the serum of mice immunized by subcutaneous injection with both nanovaccines produced significant immunoglobulin G (IgG) responses against the chimeric antigen. The results of TBO-specific IgG isotype (IgG2a/IgG1) analysis showed that both AH and Se NPs induced a type to T-helper immune response. In addition, the results of the challenge with the pathogenic strain of Brucella melitensis 16M showed that vaccinated mice with AH/TBO NPs indicated a higher reduction of bacterial culture than immunized mice with Se/TBO NPs and TBO alone. Conclusion: The results showed that AH NPs carrying chimeric antigen can be a promising vaccine candidate against brucellosis by producing protective immunity.

Identification of virulence-associated genes of Erwinia amylovora by transposon mutagenesis

  • Seung Yeup Lee;Hyun Gi Kong;In Jeong Kang;Hyeonseok Oh;Hee-Jong Woo;Eunjung Roh
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.2
    • /
    • pp.241-247
    • /
    • 2023
  • Erwinia amylovora , which causes fire blight disease on apple and pear trees, is one of the most important phytopathogens because of its devastating impact. Currently, the only way to effectively control fire blight disease is through the use of antibiotics such as streptomycin, kasugamycin, or oxytetracycline. However, problems with the occurrence of resistant strains due to the overuse of antibiotics are constantly being raised. It is therefore necessary to develop novel disease control methods through an advanced understanding of the pathogenesis mechanism of E. amylovora . To better understand the pathogenesis of E. amylovora , we investigated unknown virulence factors by random mutagenesis and screening. Random mutants were generated by Tn5 transposon insertion, and the pathogenicity of the mutants was assessed by inoculation of the mutants on apple fruitlets. A total of 17 avirulent mutants were found through screening of 960 random mutants. Among them, 14 mutants were already reported as non-pathogenic strains, while three mutants, TS3128_M2899 (ΔSUFU ), TS3128_M2939 (ΔwcaG ), and TS3128_M3747 (ΔrecB ), were not reported. Further study of the association between E. amylovora pathogenicity and these 3 novel genes may provide new insight into the development of control methods for fire blight disease.

Biological properties of fermented milk with fortified whey protein

  • Ki Whan Kim;Seok Han Ra;Gereltuya Renchinkhand;Woo Jin Ki;Myoung Soo Nam;Woan Sub Kim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.2
    • /
    • pp.281-294
    • /
    • 2023
  • As a byproduct obtained from cheese manufacture, whey protein was developed as a functional food that contains multi-functional proteins. In this study, the biochemical activity of fermented milk prepared by fortifying whey protein with excellent physiological activity was investigated. Immunoglobulin (IgG) content was higher in 10% fortified whey protein fermented milk than in the control. The viable cell counts were 20% higher in the fermented milk with 10% fortified whey protein than in the control group. The antibacterial effect of 10% fortified whey protein fermented milk compared to the control group was shown to be effective against four pathogenic microorganisms, Escherichia coli (KCTC1039), Pseudomonas aeruginosa 530, Salmonela Typhimurium (KCTC3216), and Staphylococcus aureus (KCTC1621). The antioxidant effect by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities wasincreased two-fold in 10% fortified whey protein fermented milk compared to the control. The 10% fortified whey protein fermented milk inhibited the expression of the inflammatory cytokines (interleukin [IL]-6, tumor necrosis factor [TNF]-α, and induced nitric oxide synthase [iNOS]) in a concentration-dependent manner. In a piglets feeding test, the weight gain with 10% fortified whey protein fermented milk was increased by 18% compared to the control group, and no diarrhea symptoms appeared. Our results clearly demonstrated that 10% fortified whey protein fermented milk could be a useful functional ingredient for improving health.

Antioxidant, antibacterial, and antiinflammatory effects of yoghurt made with vitamin tree (Hippophae rhamnoides L.) fruit powder

  • Byung Bae Park;Gereltuya Renchinkhand;Woo Jin Ki;Jong Woo Choi;Myoung Soo Nam
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.905-917
    • /
    • 2022
  • It is well known that the fruit of the vitamin tree (Hippophae rhamnoides L.) provides excellent anti-diabetic, antibacterial, immune regulation, anti-inflammatory, and anti-aging effects. In some countries including Europe the fruit has been added to certain foods to develop functional foods. The present research was carried out to elucidate the biological function of vitamin tree fruit powder added to fermented milk. It was found that there was an antioxidant effect of yoghurt made with vitamin tree fruit powder, and this effect was greater with increased incubation time and amount of vitamin powder, as shown by 1,1-diphenyl2-picrylhydrazyl (DPPH) and 2,2-anziobis (3-ehtylbenzothiazoline-6-sulfonic aicd) (ABTS) radical scavenging activities. The antibacterial effect of yoghurt containing vitamin tree fruit powder was shown to be effective against four pathogenic microorganisms, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonela Typhimurium. In particular, yoghurt supplemented with 5% of vitamin tree fruit powder showed the best antibacterial effect. The yogurt containing the vitamin tree fruit powder significantly inhibited the expression of the anti-inflammatory cytokines interleukin (IL)-6 (yogurt [Y] + Hippophae rhamnoides L. powder [HP] and yogurt containing 5% Hippophae rhamnoides L. powder [HPY]) and IL-1β (HP, Y + HP and HPY) in a concentration-dependent manner among tumor necrosis factor (TNF)-α, IL-6, IL-1, and induced nitric oxide synthase (iNOS). Our results clearly demonstrated that vitamin tree fruit powder could be a good functional ingredient for improving health through yoghurt manufactured with vitamin tree.

Quality Factor Determination and Shelf-Life Prediction of Powdered-Model Food (분말 제품의 품질 인자 규명 및 저장 수명 예측)

  • Baik, Eun-Kyung;Park, Seok-Jun;Lee, Kang-Pyo;Choi, Sung-Won;Hur, Nam-Yun;Baik, Moo-Yeol
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.160-167
    • /
    • 2007
  • Shelf-stability of powdered model food was determined during storage at various temperatures ($25^{\circ}C$, $35^{\circ}C$) and various moisture contents (3.5%, 6.0%, 8.0%). Moisture content, peroxide value, pH, color, microbial counting and sensory evaluation were conducted during storage. Moisture content, peroxide value, pH and color were not significantly changed during storage in all samples indicating that this powdered model food was relatively stable at given conditions. Pathogenic microorganisms, such as Bacillus cereus, Listeria spp., Clostridium perfrigens, Salmonella spp. and Staphylococcus aureus, were not found during storage suggesting that there was no problem in safety in this case. On the other hand, the number of artificially added Lactic acid bacteria was decreased with increasing both storage temperature and moisture content. Therefore, powdered model food was very shelf-stable and it was impossible to predict the shelf-life using above quality factors.

  • PDF