Acknowledgement
This work was supported by the grant from Forest Science and Technology Development (Project No. FE0100-2022-03-2022) funded by the Korea Forest Service, Republic of Korea.
References
- Ahn, M. S., Park, P. H., Kwon, Y. N., Mekapogu, M., Kim, S. W., Jie, E. Y. et al. 2018. Discrimination of floral scents and metabolites in cut flowers of peony (Paeonia lactiflora Pall.) cultivars. Korean J. Plant Res. 31: 641-651.
- Akinsanmi, O. A., Nisa, S., Jeff-Ego, O. S., Shivas, R. G. and Drenth, A. 2017. Dry flower disease of Macadamia in Australia caused by Neopestalotiopsis macadamiae sp. nov. and Pestalotiopsis macadamiae sp. nov. Plant Dis. 101: 45-53. https://doi.org/10.1094/PDIS-05-16-0630-RE
- Aktaruzzaman, M., Afroz, T. and Kim, B.-S. 2022. Post-harvest green pea pod rot caused by Sclerotinia sclerotiorum in Korea. Res. Plant Dis. 28: 46-50. https://doi.org/10.5423/RPD.2022.28.1.46
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
- Amrutha, P. and Vijayaraghavan, R. 2018. Evaluation of fungicides and biocontrol agents against Neopestalotiopsis clavispora causing leaf blight of strawberry (Fragaria x ananassa Duch.). Int. J. Curr. Microbiol. App. Sci. 7: 622-628. https://doi.org/10.20546/ijcmas.2018.708.067
- Bolton, M. D., Thomma, B. P. and Nelson, B. D. 2006. Sclerotinia sclerotiorum (lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol. Plant Pathol. 7: 1-16. https://doi.org/10.1111/j.1364-3703.2005.00316.x
- Carbone, I. and Kohn, L. M. 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553-556. https://doi.org/10.1080/00275514.1999.12061051
- Chai, Q., Xu, J., Guo, Y., Hou, Y., Hou, X. and Liu, S. 2022. Inhibitory activity of three types of fungicides on Cladosporium paeoniae and their control efficacy against paeony leaf mold. Eur. J. Plant Pathol. 163: 707-717. https://doi.org/10.1007/s10658-022-02509-7
- Choi, S.-Y., Park, K.-S., Kim, K.-J. and Kim, J.-C. 2004. Occurrence and control of black root rot of peony (Paeonia lactiflora) on continuous cropping. Res. Plant Dis. 10: 268-271. https://doi.org/10.5423/RPD.2004.10.4.268
- Darapanit, A., Boonyuen, N., Leesutthiphonchai, W., Nuankaew, S. and Piasai, O. 2021. Identification, pathogenicity and effects of plant extracts on Neopestalotiopsis and Pseudopestalotiopsis causing fruit diseases. Sci. Rep. 11: 22606.
- Do, Y. J., Kim, D. H., Jo, M. S., Kang, D. G., Lee, S. W., Kim, J.-W. et al. 2019. In vitro conidial germination and mycelial growth of Fusarium oxysporum f. sp. fragariae coordinated by hydrogen peroxideand nitric oxide-signalling. Kor. J. Mycol. 47: 219-232.
- Du, W., Liang, X., Wang, S., Lee, P. and Zhang, Y. 2020. The underlying mechanism of Paeonia lactiflora Pall. in Parkinson's disease based on a network pharmacology approach. Front. Pharmacol. 11: 581984.
- Garfinkel, A. R. and Chastagner, G. A. 2018. Diseases of Peonies. In: Handbook of Florists' Crops Diseases, eds. by R. McGovern and W. Elmer, pp. 663-692. Handbook of Plant Disease Management. Springer International Publishing, Cham, Switzerland.
- Garfinkel, A. R. and Chastagner, G. A. 2019. Survey reveals a broad range of fungal pathogens and an oomycete on peonies in the United States. Plant Health Prog. 20: 250-254. https://doi.org/10.1094/PHP-09-19-0065-S
- Ginns, J. H. 1986. Paeonia L. In: Compendium of plant disease and decay in Canada 1960-1980, ed. by J. H. Ginns, pp. 140. Agriculture Canada, Research Branch. Publ., Ottawa, Canada.
- He, D.-Y. and Dai, S.-M. 2011. Anti-inflammatory and immunomodulatory effects of Paeonia lactiflora Pall., a traditional Chinese herbal medicine. Front. Pharmacol. 2: 10.
- Jajoriya, A., Ahir, R. R. and Meena, R. 2022. Management studies on Sclerotinia sclerotiorum (Lib.) de Bary, causing sclerotinia rot of cauliflower through fungicides and oil cakes. Pharma Innov. J. 11: 1148-1151.
- Kamenetsky-Goldstein, R. and Yu, X. 2022. Cut peony industry: the first 30 years of research and new horizons. Hort. Res. 9: uhac079.
- Kim, H. J., Park, M. Y., Ma, K.-C. and Kim, Y. C. 2020. First report of Botrytis mold caused by Botrytis cinerea on peonies (Paeonia lactiflora Pall.). Res. Plant Dis. 26: 279-282. https://doi.org/10.5423/RPD.2020.26.4.279
- Kim, S.-J., Park, J.-H., Kim, J.-H., Park, S.-D. and Choi, B.-S. 2001. Effect of the rain shelter cultivation on disease occurrence inhibition and growth in peony (Paeonia lactiflora Pallas L.). Kor. J. Medicinal Crop Sci. 9: 150-155. (In Korean)
- Krishnamoorthy, K. K., Sankaralingam, A. and Nakkeeran, S. 2017. Management of head rot of cabbage caused by Sclerotinia sclerotiorum through combined application of fungicides and biocontrol Bacillus amyloliquefaciens. Int. J. Chem. Stud. 5: 401-404.
- Lee, Y. H., Cho, Y.-S., Lee, S. W. and Hong, J. K. 2012. Chemical and biological controls of balloon flower stem rots caused by Rhizoctonia solani and Sclerotinia sclerotiorum. Plant Pathol. J. 28: 156-163. https://doi.org/10.5423/PPJ.2012.28.2.156
- Lee, Y. H., Jang, S. J., Han, J.-H., Bae, J. S., Shin, H., Park, H. J., et al. 2018. Enhanced tolerance of chinese cabbage seedlings mediated by Bacillus aryabhattai H26-2 and B. siamensis H30-3 against high temperature stress and fungal infections. Plant Pathol. J. 34: 555-566. https://doi.org/10.5423/PPJ.OA.07.2018.0130
- Ma, X., Wang, Z., Liu, R. and Jiang, Y. 2023. Effect of powdery mildew on interleaf microbial communities and leaf antioxidant enzyme systems. J. For. Res. 34: 1535-1547. https://doi.org/10.1007/s11676-023-01597-3
- Maharachchikumbura, S. S., Hyde, K. D., Groenewald, J. Z., Xu, J. and Crous, P. W. 2014. Pestalotiopsis revisited. Stud. Mycol. 79: 121-186. https://doi.org/10.1016/j.simyco.2014.09.005
- Marra, R. E. and Li, D.-W. 2009. First report of Pestalotiopsis paeoniicola causing twig blight on Paeonia suffruticosa in North America. Plant Dis. 93: 966.
- Nam, Y.-J., Oh, S.-K., Kim, S. H., Moon, Y.-G., Cho, W.-D. and Kim, W.-G. 2022. Phytophthora foot rot of deltoid synurus caused by Phytophthora cryptogea. Res. Plant Dis. 28: 162-165. https://doi.org/10.5423/RPD.2022.28.3.162
- Pavlic, D., Slippers, B., Coutinho, T. A. and Wingfield, M. J. 2009. Multiple gene genealogies and phenotypic data reveal cryptic species of the Botryosphaeriaceae: a case study on the Neofusicoccum parvum/N. ribis complex. Mol. Phylogenet. Evol. 51: 259-268. https://doi.org/10.1016/j.ympev.2008.12.017
- Park, B. R., Son, H. J., Park, J. H., Kim, E. S., Heo, S. J., Youn, H. R. et al. 2021. Chemical fungicides and Bacillus siamensis H30-3 against fungal and oomycete pathogens causing soil-borne strawberry diseases. Plant Pathol. J. 37: 79-85. https://doi.org/10.5423/PPJ.NT.12.2020.0232
- Park, M.-J., Lee, J.-H., Back, C.-G. and Park, J.-H. 2020. First report of Colletotrichum fioriniae causing anthracnose on Paeonia lactiflora in Korea. Plant Dis. 104: 3259.
- Park, S.-D., Kim, K.-J., You, O.-J., Kim, S.-J., Kim, J.-C. and Shin, J.-H. 1996. Incidence of major diseases on Paeonia lactiflora PALLAS. Korean J. Medicinal Crop Sci. 4: 236-240. (In Korean)
- Shi, Y.-H., Zhu, S., Ge, Y.-W., He, Y.-M., Kazuma, K., Wang, Z. et al. 2016. Monoterpene derivatives with anti-allergic activity from red peony root, the root of Paeonia lactiflora. Fitoterapia 108: 55-61. https://doi.org/10.1016/j.fitote.2015.11.011
- Shin, D. J., Yoo, S.-J., Hong, J. K., Weon, H.-Y., Song, J. and Sang, M. K. 2019. Effect of Bacillus aryabhattai H26-2 and B. siamensis H30- 3 on growth promotion and alleviation of heat and drought stresses in Chinese cabbage. Plant Pathol. J. 35: 178-187. https://doi.org/10.5423/PPJ.NT.08.2018.0159
- Tamura, K., Stecher, G. and Kumar, S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38: 3022-3027. https://doi.org/10.1093/molbev/msab120
- Tang, Y., Shi, W., Xia, X., Zhao, D., Wu, Y. and Tao, J. 2022. Morphological, microstructural and lignin-related responses of herbaceous peony stem to shading. Sci. Hortic. 293: 110734.
- The Korean Society of Plant Pathology. 2022. List of Plant Diseases in Korea. 6th ed. Korean Society of Plant Pathology, Seoul, Korea. 630
- Wang, X., Shi, X., Zhang, R., Zhang, K., Shao, L., Xu, T. et al. 2022. Impact of summer heat stress inducing physiological and biochemical responses in herbaceous peony cultivars (Paeonia lactiflora Pall.) from different latitudes. Ind. Crops Prod. 184: 115000.
- White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications, eds. by M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White. pp. 315-322. Academic Press, San Diego, CA, USA.
- Willetts, H. J. and Wong, J. A. L. 1980. The biology of Sclerotinia sclerotiorum, S. trifoliorum, and S. minor with emphasis on specific nomenclature. Bot. Rev. 46: 101-165. https://doi.org/10.1007/BF02860868
- Wu, Y.-Q., Zhao, D.-Q., Han, C.-X. and Tao, J. 2016. Biochemical and molecular responses of herbaceous peony to high temperature stress. Can. J. Plant Sci. 96: 474-484. https://doi.org/10.1139/cjps-2015-0255
- Yang, R., Ye, W., Liu, P., Li, J., Lu, M., Wang, Z. et al. 2024. Endophytic Bacillus amyloliquefaciens Mdgb15 is a potential biocontrol agent against tree peony gray mold caused by Botrytis cinerea. Eur. J. Plant Pathol. Online publication. https://doi.org/10.1007/s10658-024-02838-9.
- Zhao, D., Hao, Z. and Tao, J. 2012. Effects of shade on plant growth and flower quality in the herbaceous peony (Paeonia lactiflora Pall.). Plant Physiol. Biochem. 61: 187-196. https://doi.org/10.1016/j.plaphy.2012.10.005
- Zhao, D., Xu, C., Luan, Y., Shi, W., Tang, Y. and Tao, J. 2021. Silicon enhances stem strength by promoting lignin accumulation in herbaceous peony (Paeonia lactiflora Pall.). Int. J. Biol. Macromol. 190: 769-779. https://doi.org/10.1016/j.ijbiomac.2021.09.016
- Zhao, D.-Q., Li, T.-T., Hao, Z.-J., Cheng, M.-L. and Tao, J. 2019. Exogenous trehalose confers high temperature stress tolerance to herbaceous peony by enhancing antioxidant systems, activating photosynthesis, and protecting cell structure. Cell Stress Chaperones 24: 247-257. https://doi.org/10.1007/s12192-018-00961-1