DOI QR코드

DOI QR Code

Peony Stem Rots by Neopestalotiopsis clavispora and Sclerotinia sclerotiorum, and Antifungal Propineb and Bacillus siamensis H30-3 against the Two Fungal Species

  • Jeum Kyu Hong (Division of Horticultural Science, Gyeongsang National University) ;
  • Young Hee Lee (Division of Horticultural Science, Gyeongsang National University) ;
  • Yeon Sook Jo (Division of Horticultural Science, Gyeongsang National University) ;
  • Su Min Kim (Division of Horticultural Science, Gyeongsang National University) ;
  • Seoung Bin Lee (Division of Horticultural Science, Gyeongsang National University) ;
  • Juyeoung Um (Division of Horticultural Science, Gyeongsang National University) ;
  • Kyoung-Ok Choi (Division of Horticultural Science, Gyeongsang National University) ;
  • Mee Kyung Sang (National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Chung-Ryul Jung (National Institute of Forest Science, Korea Forest Service) ;
  • Chang-Jin Park (Department of Bioresources Engineering, Sejong University) ;
  • Sung Hwan Choi (Division of Horticultural Science, Gyeongsang National University)
  • Received : 2024.03.26
  • Accepted : 2024.04.16
  • Published : 2024.06.30

Abstract

In July 2022, stem rot symptom was found in a peony plant grown in a pot under a greenhouse at Jinju, Gyeongnam Province, South Korea. Two fungal species were isolated from the infected peony stems and cultured on 1/2-strength potato dextrose agar for identification. The morphological characteristics of the fungal isolates were examined, and nucleotide sequences of the internal transcribed spacer region, β-tubulin and translation elongation factor 1-α were analysed. The pathogenicity of the two isolates was confirmed in detached peony leaves, according to Koch's postulates. To our knowledge, this is the report of Neopestalotiopsis clavispora and Sclerotinia sclerotiorum as the causal agents of peony stem rots. Antifungal activity of chemical fungicide propineb and rhizobacterium Bacillus siamensis H30-3 was shown against the two plant pathogenic fungi N. clavispora and S. sclerotiorum.Unidentified diffusible and volatile compounds from B. siamensis H30-3 could suppress in vitro mycelial growths of N. clavispora JJ 8-2-1 and S. sclerotiorum JJ 8-2-2.

Keywords

Acknowledgement

This work was supported by the grant from Forest Science and Technology Development (Project No. FE0100-2022-03-2022) funded by the Korea Forest Service, Republic of Korea.

References

  1. Ahn, M. S., Park, P. H., Kwon, Y. N., Mekapogu, M., Kim, S. W., Jie, E. Y. et al. 2018. Discrimination of floral scents and metabolites in cut flowers of peony (Paeonia lactiflora Pall.) cultivars. Korean J. Plant Res. 31: 641-651.
  2. Akinsanmi, O. A., Nisa, S., Jeff-Ego, O. S., Shivas, R. G. and Drenth, A. 2017. Dry flower disease of Macadamia in Australia caused by Neopestalotiopsis macadamiae sp. nov. and Pestalotiopsis macadamiae sp. nov. Plant Dis. 101: 45-53. https://doi.org/10.1094/PDIS-05-16-0630-RE
  3. Aktaruzzaman, M., Afroz, T. and Kim, B.-S. 2022. Post-harvest green pea pod rot caused by Sclerotinia sclerotiorum in Korea. Res. Plant Dis. 28: 46-50. https://doi.org/10.5423/RPD.2022.28.1.46
  4. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  5. Amrutha, P. and Vijayaraghavan, R. 2018. Evaluation of fungicides and biocontrol agents against Neopestalotiopsis clavispora causing leaf blight of strawberry (Fragaria x ananassa Duch.). Int. J. Curr. Microbiol. App. Sci. 7: 622-628. https://doi.org/10.20546/ijcmas.2018.708.067
  6. Bolton, M. D., Thomma, B. P. and Nelson, B. D. 2006. Sclerotinia sclerotiorum (lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol. Plant Pathol. 7: 1-16. https://doi.org/10.1111/j.1364-3703.2005.00316.x
  7. Carbone, I. and Kohn, L. M. 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553-556. https://doi.org/10.1080/00275514.1999.12061051
  8. Chai, Q., Xu, J., Guo, Y., Hou, Y., Hou, X. and Liu, S. 2022. Inhibitory activity of three types of fungicides on Cladosporium paeoniae and their control efficacy against paeony leaf mold. Eur. J. Plant Pathol. 163: 707-717. https://doi.org/10.1007/s10658-022-02509-7
  9. Choi, S.-Y., Park, K.-S., Kim, K.-J. and Kim, J.-C. 2004. Occurrence and control of black root rot of peony (Paeonia lactiflora) on continuous cropping. Res. Plant Dis. 10: 268-271. https://doi.org/10.5423/RPD.2004.10.4.268
  10. Darapanit, A., Boonyuen, N., Leesutthiphonchai, W., Nuankaew, S. and Piasai, O. 2021. Identification, pathogenicity and effects of plant extracts on Neopestalotiopsis and Pseudopestalotiopsis causing fruit diseases. Sci. Rep. 11: 22606.
  11. Do, Y. J., Kim, D. H., Jo, M. S., Kang, D. G., Lee, S. W., Kim, J.-W. et al. 2019. In vitro conidial germination and mycelial growth of Fusarium oxysporum f. sp. fragariae coordinated by hydrogen peroxideand nitric oxide-signalling. Kor. J. Mycol. 47: 219-232.
  12. Du, W., Liang, X., Wang, S., Lee, P. and Zhang, Y. 2020. The underlying mechanism of Paeonia lactiflora Pall. in Parkinson's disease based on a network pharmacology approach. Front. Pharmacol. 11: 581984.
  13. Garfinkel, A. R. and Chastagner, G. A. 2018. Diseases of Peonies. In: Handbook of Florists' Crops Diseases, eds. by R. McGovern and W. Elmer, pp. 663-692. Handbook of Plant Disease Management. Springer International Publishing, Cham, Switzerland.
  14. Garfinkel, A. R. and Chastagner, G. A. 2019. Survey reveals a broad range of fungal pathogens and an oomycete on peonies in the United States. Plant Health Prog. 20: 250-254. https://doi.org/10.1094/PHP-09-19-0065-S
  15. Ginns, J. H. 1986. Paeonia L. In: Compendium of plant disease and decay in Canada 1960-1980, ed. by J. H. Ginns, pp. 140. Agriculture Canada, Research Branch. Publ., Ottawa, Canada.
  16. He, D.-Y. and Dai, S.-M. 2011. Anti-inflammatory and immunomodulatory effects of Paeonia lactiflora Pall., a traditional Chinese herbal medicine. Front. Pharmacol. 2: 10.
  17. Jajoriya, A., Ahir, R. R. and Meena, R. 2022. Management studies on Sclerotinia sclerotiorum (Lib.) de Bary, causing sclerotinia rot of cauliflower through fungicides and oil cakes. Pharma Innov. J. 11: 1148-1151.
  18. Kamenetsky-Goldstein, R. and Yu, X. 2022. Cut peony industry: the first 30 years of research and new horizons. Hort. Res. 9: uhac079.
  19. Kim, H. J., Park, M. Y., Ma, K.-C. and Kim, Y. C. 2020. First report of Botrytis mold caused by Botrytis cinerea on peonies (Paeonia lactiflora Pall.). Res. Plant Dis. 26: 279-282. https://doi.org/10.5423/RPD.2020.26.4.279
  20. Kim, S.-J., Park, J.-H., Kim, J.-H., Park, S.-D. and Choi, B.-S. 2001. Effect of the rain shelter cultivation on disease occurrence inhibition and growth in peony (Paeonia lactiflora Pallas L.). Kor. J. Medicinal Crop Sci. 9: 150-155. (In Korean)
  21. Krishnamoorthy, K. K., Sankaralingam, A. and Nakkeeran, S. 2017. Management of head rot of cabbage caused by Sclerotinia sclerotiorum through combined application of fungicides and biocontrol Bacillus amyloliquefaciens. Int. J. Chem. Stud. 5: 401-404.
  22. Lee, Y. H., Cho, Y.-S., Lee, S. W. and Hong, J. K. 2012. Chemical and biological controls of balloon flower stem rots caused by Rhizoctonia solani and Sclerotinia sclerotiorum. Plant Pathol. J. 28: 156-163. https://doi.org/10.5423/PPJ.2012.28.2.156
  23. Lee, Y. H., Jang, S. J., Han, J.-H., Bae, J. S., Shin, H., Park, H. J., et al. 2018. Enhanced tolerance of chinese cabbage seedlings mediated by Bacillus aryabhattai H26-2 and B. siamensis H30-3 against high temperature stress and fungal infections. Plant Pathol. J. 34: 555-566. https://doi.org/10.5423/PPJ.OA.07.2018.0130
  24. Ma, X., Wang, Z., Liu, R. and Jiang, Y. 2023. Effect of powdery mildew on interleaf microbial communities and leaf antioxidant enzyme systems. J. For. Res. 34: 1535-1547. https://doi.org/10.1007/s11676-023-01597-3
  25. Maharachchikumbura, S. S., Hyde, K. D., Groenewald, J. Z., Xu, J. and Crous, P. W. 2014. Pestalotiopsis revisited. Stud. Mycol. 79: 121-186. https://doi.org/10.1016/j.simyco.2014.09.005
  26. Marra, R. E. and Li, D.-W. 2009. First report of Pestalotiopsis paeoniicola causing twig blight on Paeonia suffruticosa in North America. Plant Dis. 93: 966.
  27. Nam, Y.-J., Oh, S.-K., Kim, S. H., Moon, Y.-G., Cho, W.-D. and Kim, W.-G. 2022. Phytophthora foot rot of deltoid synurus caused by Phytophthora cryptogea. Res. Plant Dis. 28: 162-165. https://doi.org/10.5423/RPD.2022.28.3.162
  28. Pavlic, D., Slippers, B., Coutinho, T. A. and Wingfield, M. J. 2009. Multiple gene genealogies and phenotypic data reveal cryptic species of the Botryosphaeriaceae: a case study on the Neofusicoccum parvum/N. ribis complex. Mol. Phylogenet. Evol. 51: 259-268. https://doi.org/10.1016/j.ympev.2008.12.017
  29. Park, B. R., Son, H. J., Park, J. H., Kim, E. S., Heo, S. J., Youn, H. R. et al. 2021. Chemical fungicides and Bacillus siamensis H30-3 against fungal and oomycete pathogens causing soil-borne strawberry diseases. Plant Pathol. J. 37: 79-85. https://doi.org/10.5423/PPJ.NT.12.2020.0232
  30. Park, M.-J., Lee, J.-H., Back, C.-G. and Park, J.-H. 2020. First report of Colletotrichum fioriniae causing anthracnose on Paeonia lactiflora in Korea. Plant Dis. 104: 3259.
  31. Park, S.-D., Kim, K.-J., You, O.-J., Kim, S.-J., Kim, J.-C. and Shin, J.-H. 1996. Incidence of major diseases on Paeonia lactiflora PALLAS. Korean J. Medicinal Crop Sci. 4: 236-240. (In Korean)
  32. Shi, Y.-H., Zhu, S., Ge, Y.-W., He, Y.-M., Kazuma, K., Wang, Z. et al. 2016. Monoterpene derivatives with anti-allergic activity from red peony root, the root of Paeonia lactiflora. Fitoterapia 108: 55-61. https://doi.org/10.1016/j.fitote.2015.11.011
  33. Shin, D. J., Yoo, S.-J., Hong, J. K., Weon, H.-Y., Song, J. and Sang, M. K. 2019. Effect of Bacillus aryabhattai H26-2 and B. siamensis H30- 3 on growth promotion and alleviation of heat and drought stresses in Chinese cabbage. Plant Pathol. J. 35: 178-187. https://doi.org/10.5423/PPJ.NT.08.2018.0159
  34. Tamura, K., Stecher, G. and Kumar, S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38: 3022-3027. https://doi.org/10.1093/molbev/msab120
  35. Tang, Y., Shi, W., Xia, X., Zhao, D., Wu, Y. and Tao, J. 2022. Morphological, microstructural and lignin-related responses of herbaceous peony stem to shading. Sci. Hortic. 293: 110734.
  36. The Korean Society of Plant Pathology. 2022. List of Plant Diseases in Korea. 6th ed. Korean Society of Plant Pathology, Seoul, Korea. 630
  37. Wang, X., Shi, X., Zhang, R., Zhang, K., Shao, L., Xu, T. et al. 2022. Impact of summer heat stress inducing physiological and biochemical responses in herbaceous peony cultivars (Paeonia lactiflora Pall.) from different latitudes. Ind. Crops Prod. 184: 115000.
  38. White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications, eds. by M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White. pp. 315-322. Academic Press, San Diego, CA, USA.
  39. Willetts, H. J. and Wong, J. A. L. 1980. The biology of Sclerotinia sclerotiorum, S. trifoliorum, and S. minor with emphasis on specific nomenclature. Bot. Rev. 46: 101-165. https://doi.org/10.1007/BF02860868
  40. Wu, Y.-Q., Zhao, D.-Q., Han, C.-X. and Tao, J. 2016. Biochemical and molecular responses of herbaceous peony to high temperature stress. Can. J. Plant Sci. 96: 474-484. https://doi.org/10.1139/cjps-2015-0255
  41. Yang, R., Ye, W., Liu, P., Li, J., Lu, M., Wang, Z. et al. 2024. Endophytic Bacillus amyloliquefaciens Mdgb15 is a potential biocontrol agent against tree peony gray mold caused by Botrytis cinerea. Eur. J. Plant Pathol. Online publication. https://doi.org/10.1007/s10658-024-02838-9.
  42. Zhao, D., Hao, Z. and Tao, J. 2012. Effects of shade on plant growth and flower quality in the herbaceous peony (Paeonia lactiflora Pall.). Plant Physiol. Biochem. 61: 187-196. https://doi.org/10.1016/j.plaphy.2012.10.005
  43. Zhao, D., Xu, C., Luan, Y., Shi, W., Tang, Y. and Tao, J. 2021. Silicon enhances stem strength by promoting lignin accumulation in herbaceous peony (Paeonia lactiflora Pall.). Int. J. Biol. Macromol. 190: 769-779. https://doi.org/10.1016/j.ijbiomac.2021.09.016
  44. Zhao, D.-Q., Li, T.-T., Hao, Z.-J., Cheng, M.-L. and Tao, J. 2019. Exogenous trehalose confers high temperature stress tolerance to herbaceous peony by enhancing antioxidant systems, activating photosynthesis, and protecting cell structure. Cell Stress Chaperones 24: 247-257. https://doi.org/10.1007/s12192-018-00961-1