• Title/Summary/Keyword: pathogen inhibition

Search Result 201, Processing Time 0.026 seconds

Current Status of Bacterial Brown Stripe of Rice Caused by Acidovorax avenae subsp. avenae (Acidovorax avenae subsp. avenae에 의한 세균성줄무늬병의 연구동향)

  • 송완엽
    • Plant Disease and Agriculture
    • /
    • v.5 no.2
    • /
    • pp.69-76
    • /
    • 1999
  • Acidovorax avenae subsp. avenae is the causal pathogen of several hosts including oats corn foxtail millet wheatgrass sugarcane and rice. The pathogen is a seedborne pathogen of rice and known to occur widely in rice growing countries. The pathogen cause inhibition of germination brown stripe on the leaf curling of the leaf sheath and abnormal elongation of the mesocotyl of irce. Bacterial colonies grow slowly and are convex circular and creamy with tan to brown center. The causal baterium is Gram-negative and rod shape with a single polar flagellum Nonfluorescence poly-$\beta$-hydroxybutyrate accumulation and precipitate formation around the colony on the medium are useful in the differentiation of this bacterium from other subspecies of A. avenae as well as nonfluorescent bacteria pathogenic to rice. This bacterium has belonged to the genus of Psdeudomonas but recently was transferred to the new genus Acidovorax on the basis of bacteriological and molecular biological data. However the difference of biochemical characteristics protein profile of the cell and host range among strains should be more clarified. To develop an effective control strategy for this disease understanding of detailed life cycle of the disease ritical environmental factors affecting disease development on each host and relationship to grain discoloration of rice are prerequisite. Although the affected area has been world-widely reported there is on recent progress on the understanding of the bacteriological and ecological characteristics of the causal bacterium and control means of the disease.

  • PDF

Stable Microbial Community and Specific Beneficial Taxa Associated with Natural Healthy Banana Rhizosphere

  • Fu, Lin;Ou, Yannan;Shen, Zongzhuan;Wang, Beibei;Li, Rong;Shen, Qirong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1624-1628
    • /
    • 2019
  • Banana planting altered microbial communities and induced the enrichment of Fusarium oxysporum in rhizosphere compared with that of forest soil. Diseased plant rhizosphere soil (WR) harbored increased pathogen abundance and showed distinct microbial structures from healthy plant rhizosphere soil (HR). The enriched taxon of Bordetella and key taxon of Chaetomium together with some other taxa showed negative associations with pathogen in HR, indicating their importance in pathogen inhibition. Furthermore, a more stable microbiota was observed in HR than in WR. Taken together, the lower pathogen abundance, specific beneficial microbial taxa and stable microbiota contributed to disease suppression.

Evaluation of Bio-Control Efficacy of Trichoderma Strains against Alternaria alternata Causing Leaf Blight of Ashwagandha [Withania somnifera (L.) Dunal]

  • Rahman, Md. Ahsanur;Rahman, Md. Arifur;Moni, Zakiah Rahman;Rahman, Mohammad Anisur
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.3
    • /
    • pp.207-218
    • /
    • 2020
  • Ashwagandha is an important ancient medicinal crops, being affected with many diseases, among which leaf blight caused by Alternaria alternata has become the constraint resulting in huge yield losses. Continuous usage of chemical methods leads to environment, soil and water pollution. Whereas biological control of diseases is long lasting, inexpensive, eco-friendly and harmless to target organisms. In this context, it is aimed to evaluate five Trichoderma strains viz. Trichoderma virens IMI-392430, T. pseudokoningii IMI-392431, T. harzianum IMI-392432, T. harzianum IMI-392433 and T. harzianum IMI-392434 as bio-control efficacy against A. alternata and growth promoting effect in Ashwagandha. All the Trichoderma strains had varied antagonistic effects against the pathogen. In dual culture technique, the strain T. harzianum IMI-392433 showed maximum percentage inhibition of mycelial growth (54.89%) followed by T. harzianum IMI-392432 (53.83%), T. harzianum IMI-392434 (48.94%) and T. virens IMI-392430, (43.62%) against the pathogen, while the least inhibition percentage was observed with the T. pseudokoningii IMI-392431 (36.60%). The culture filtrate of the Trichoderma strain, T. harzianum IMI-392433 recorded highest inhibition on the mycelial growth (39.05%) and spore germination (80.77%) of pathogen and the lowest was recorded in T. pseudokoningii IMI-392431 (20.45 and 50%). Moreover, seeds treated with spore suspension of the strain T. harzianum IMI-392433 reduced the percentages of disease severity index significantly. The strain T. harzianum IMI-392433 also significantly increased seed germination %, seedling vigor and growth of Ashwagandha. The correlation matrix showed that root yield per plant of Ashwagandha had significant and positive correlation with plant height (r=0.726⁎⁎), number of leaf (r=0.514⁎⁎), number of primary branch (r=0.820⁎⁎), number of secondary branch (r=0.829⁎⁎), fresh plant weight (r=0.887⁎⁎), plant dry weight (r=0.613⁎⁎), root length (r=0.824⁎⁎), root diameter (r=0.786⁎⁎), root dry weight (r=0.739⁎⁎) and fresh root weight (r=0.731⁎⁎). The significant and negative correlation (r=-0.336⁎⁎) was observed with the root yield and percentages of disease severity index. The study recognized that the T. harzianum IMI-392433 strain performed well in inhibiting the mycelial growth and reduced the percentages of disease severity index of pathogen as well as increased the plant growth in Ashwagandha.

Effect on Colony Growth Inhibition of Soil-Borne Fungal Pathogens by Available Chlorine Content in Sodium Hypochlorite

  • Lee, Sung-Hee;Shin, Hyunman;Kim, Ju-Hyoung;Ryu, Kyoung-Yul;Kim, Heung Tae;Cha, Byeongjin;Cha, Jae-Soon
    • The Plant Pathology Journal
    • /
    • v.35 no.2
    • /
    • pp.156-163
    • /
    • 2019
  • Our study investigated the available chlorine content, contact time and difference among strains of each pathogen for sodium hypochlorite (NaOCl) to control chemically against soil-borne fungal pathogens, such as Phytophthora rot by Phytophthora cactorum, violet root rot by Helicobasidium mompa, and white root rot by Rosellinia necatrix, causing die-back symptom on apple trees. As a result, the colony growth of Phytophthora cactorum was inhibited completely by soaking over 5 s in 31.25 ml/l available chlorine content of NaOCl. Those of H. mompa and R. necatrix were inhibited entirely by soaking over 160 s in 62.5 and 125 ml/l available chlorine content in NaOCl, respectively. Also, inhibition effect on available chlorine in NaOCl among strains of each soil-borne pathogen showed no significant difference and was similar to or better than that of fungicides.

Comparison of Microbial Fungicides in Antagonistic Activities Related to the Biological Control of Phytophthora Blight in Chili Pepper Caused by Phytophthora capsici

  • Kim, Sang-Gyu;Jang, Ye-Lim;Kim, Hye-Young;Koh, Young-Jin;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.26 no.4
    • /
    • pp.340-345
    • /
    • 2010
  • Two similar microbial fungicides (termed as MA and MB) developed in a Korean biopesticide company were analyzed and compared each other in their biocontrol activities against the phytophthora blight of chili pepper caused by Phytophthora capsici. MA and MB contained the microbe Paenibacillus polymyxa and Bacillus subtilis, respectively, with concentrations over those posted on the microbial products. In comparison of the isolated microbes (termed as MAP from MA and MBB from MB) in the antagonistic activities against P. capsici was effective, prominently against zoospore germination, while MBB only significantly inhibited the mycelia growth of the pathogen. Some effectiveness of MAP and MBB was noted in the inhibition of zoosporangium formation and zoospore release from zoosporangia; however, no such large difference between MAP and MBB was noted. In a pot experiment, MA reduced the severity of the phytophthora blight more than MB, suggesting that the disease control efficacy would be more attributable to the inhibition of zoospore germination than mycelia growth of P. capsici. These results also suggest that the similar microbes MA and MB targeting different points in the life cycle of the pathogen differ in the disease control efficacies. Therefore, to develop microbial fungicides it is required to examine the targeting points in the pathogen's life cycle as well as the action mode of antagonistic microorganisms.

Screening for In Vitro Antifungal Activity of Soil Bacteria Against Plant Pathogens

  • Chang, Sung-Hwan;Lee, Jung-Yeop;Kim, Ki-Deok;Hwang, Byung-Kook
    • Mycobiology
    • /
    • v.28 no.4
    • /
    • pp.190-192
    • /
    • 2000
  • Antifungal bacteria for biological control of plant diseases or production of novel antibiotics to plant pathogens were isolated in 1997 from various soils of Ansung, Chunan, Koyang, and Paju in Korea. Sixty-four bacterial strains pre-screened from approximately 1,400 strains were tested on V-8 juice agar against eight plant pathogenic fungi using in vitro bioassay technique for inhibition of mycelial growth. Test pathogens were Alternaria mali, Colletotrichum gloeosporioides, C. orbiculare, Fusarium oxysporum f. sp. cucumerinum, F. oxysporum f. sp. lycopersici, Magnaporthe grisea, Phytophthora capsici, and Rhizoctonia solani. A wide range of antifungal activity of bacterial strains was found against the pathogenic fungi, and strain RC-B77 showed the best antifungal activity. Correlation analysis between inhibition of each fungus and mean inhibition of all eight fungi by 64 bacterial strains revealed that C. gloeosporioides would be best appropriate for detecting bacterial strains producing antibiotics with potential as biocontrol agents for plant pathogens.

  • PDF

Selection of Bactericides for Controlling Soybean Bacterial Pustule (콩 불마름병 방제를 위한 살균제 선발)

  • Hong, Sung-Jun;Kim, Yong-Ki;Jee, Hyeong-Jin;Lee, Bong-Choon;Yoon, Young-Nam;Park, Sung-Tae
    • Research in Plant Disease
    • /
    • v.16 no.3
    • /
    • pp.266-273
    • /
    • 2010
  • Bacterial pustule of soybean (Glycines max) caused by Xanthomonas axonopodis pv. glycines is one of the most prevalent bacterial diseases of soybean. This bacterium shows strong pathogenicity to the plants and distributes throughout Korea. However, no good control measures including bactericides and resistant cultivars are available to control the disease in Korea. Therefore, this study was conducted to develop chemical control method against soybean bacterial pustule. The present study was undertaken to find out the growth inhibitory effect bactericides (8 antibiotics, 2 copper compounds, quinoline, 18 agro-chemicals) on bacterial pustule pathogen. Antibiotics test showed that tetracycline and streptomycin sulfate significantly suppressed the growth of bacterial pustule pathogen. Also, application of oxolinic acid was found to be effective for pathogen inhibition. However, vancomycin, polymyxin B sulfate and copper compounds did not show the positive suppressive effect on growth of the pathogen. Among the eighteen agro-chemicals, streptomycin sulfate + oxytetracyclin (18.8 + 1.5%) WP, oxytetracycline (17%) WP and oxolinic acid (20%) WP were found to be effective for the inhibition of the pathogen in vitro. The selected 5 agro-chemicals were also applied on soybean in field and their control effects against the soybean bacterial pustule were tested. The foliar application of streptomycin sulfate + oytetracyclin WP and oxytetracycline WP on the naturally infected soybean (Taekwangkong) showed high control value (above 70%). Therefore, it is concluded that the bactericides used in this study showed strong inhibitory effect to soybean bacterial pustule and they can be recommend to farmers to control the disease.

In vitro Biofumigation of Brassica Tissues Against Potato Stem Rot Caused by Sclerotinia sclerotiorum

  • Ojaghian, Mohammad Reza;Jiang, Heng;Xie, Guan-Lin;Cui, Zhou-Qi;Zhang, Jingze;Li, Bin
    • The Plant Pathology Journal
    • /
    • v.28 no.2
    • /
    • pp.185-190
    • /
    • 2012
  • Sclerotinia sclerotiorum is a serious pathogen which causes yield loss in many dicotyledonous crops including potato. The objective of this study was to assess the potential of biofumigation using three Brassica crops including Brassica napus, B. juncea and B. campestris against potato stem rot caused by S. sclerotiorum by in vitro tests. Both macerated and irradiated dried tissues were able to reduce radial growth and sclerotia formation of five pathogen isolates on PDA, but macerated live tissues were more effective. Compared with other tested crops, B. juncea showed more inhibitory effect against the pathogen. The volatile compounds produced from macerated tissues were identified using a gas chromatograph-mass spectrometer. The main identified compounds were methyl, allyl and butyl isothiocyanates. Different concentrations of these compounds inhibited mycelial growth of the pathogen in vitro when applied as the vapor of pure chemicals. A negative relationship was observed between chemicals concentrations and growth inhibition percentage. In this study, it became clear that the tissues of local Brassica crops release glucosinolates and have a good potential to be used against the pathogen in field examinations.

Biological Control of Fusarium Wilt by Antagonistic Microorganism in Greenhouse Grown Cucumber Plants (오이의 온실재배에서 발생하는 위조병의 미생물학적 제어)

  • Cho, Jung-Il;Cho, Ja-Yong
    • Korean Journal of Organic Agriculture
    • /
    • v.12 no.1
    • /
    • pp.101-114
    • /
    • 2004
  • This study was carried out to clarify the effects of antagonistic microorganism, Bacillus sp. JC181 isolated from the greenhouse soil grown cucumber plants on the growth inhibition of plant pathogen, fusarium wilt (Fusarium oxysporum) occurred in cucumber plants in greenhouse. Antagonistic bacterial strains were isolated and were investigated into the antifungal activity of the antagonistic microorganism against fusarium wilt. Screened fourteen bacterial strains which strongly inhibited F. oxysporum were isolated from thc greenhouse soil grown cucumber plants, and the best antagonistic bacterial strain designated as JC181, was finally selected. Antagonistic bacterial strain JC181 was identified to be the genus Bacillus sp. based on the morphological and biochemical characterization. Bacillus sp. JC181 showed 58.2% of antifungal activity against the plant pathogen growth of F. oxysporum. By the bacterialization of culture broth and heated filtrates of culture broth, Bacterial strain, Bacillus sp. JC181. showed 91.2% and 260% of antifungal activity against F. oxysporum, respectivrly.

  • PDF

Magnaporthe oryzae Effector AVR-Pii Helps to Establish Compatibility by Inhibition of the Rice NADP-Malic Enzyme Resulting in Disruption of Oxidative Burst and Host Innate Immunity

  • Singh, Raksha;Dangol, Sarmina;Chen, Yafei;Choi, Jihyun;Cho, Yoon-Seong;Lee, Jea-Eun;Choi, Mi-Ok;Jwa, Nam-Soo
    • Molecules and Cells
    • /
    • v.39 no.5
    • /
    • pp.426-438
    • /
    • 2016
  • Plant disease resistance occurs as a hypersensitive response (HR) at the site of attempted pathogen invasion. This specific event is initiated in response to recognition of pathogen-associated molecular pattern (PAMP) and subsequent PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). Both PTI and ETI mechanisms are tightly connected with reactive oxygen species (ROS) production and disease resistance that involves distinct biphasic ROS production as one of its pivotal plant immune responses. This unique oxidative burst is strongly dependent on the resistant cultivars because a monophasic ROS burst is a hallmark of the susceptible cultivars. However, the cause of the differential ROS burst remains unknown. In the study here, we revealed the plausible underlying mechanism of the differential ROS burst through functional understanding of the Magnaporthe oryzae (M. oryzae) AVR effector, AVR-Pii. We performed yeast two-hybrid (Y2H) screening using AVR-Pii as bait and isolated rice NADP-malic enzyme2 (Os-NADP-ME2) as the rice target protein. To our surprise, deletion of the rice Os-NADP-ME2 gene in a resistant rice cultivar disrupted innate immunity against the rice blast fungus. Malic enzyme activity and inhibition studies demonstrated that AVR-Pii proteins specifically inhibit in vitro NADP-ME activity. Overall, we demonstrate that rice blast fungus, M. oryzae attenuates the host ROS burst via AVR-Pii-mediated inhibition of Os-NADP-ME2, which is indispensable in ROS metabolism for the innate immunity of rice. This characterization of the regulation of the host oxidative burst will help to elucidate how the products of AVR genes function associated with virulence of the pathogen.