• Title/Summary/Keyword: path loss

Search Result 794, Processing Time 0.022 seconds

Ecophysiological Interpretations on the Water Relations Parameters of Trees(VII) - Measurement of Water Flow by the Heat Pulse Method in a Larix leptolepis Stand - (수목(樹木)의 수분특성(水分特性)에 관(關)한 생리(生理)·생태학적(生態學的) 해석(解析)(VII) - Heat pulse법(法)에 의한 낙엽송임분(林分)의 수액류속(樹液流速) 계측(計測) -)

  • Han, Sang Sup;Kim, Sun Hee
    • Journal of Korean Society of Forest Science
    • /
    • v.82 no.2
    • /
    • pp.152-165
    • /
    • 1993
  • This is the basic study in order to know the amount of transpirational water loss in a Larix leptorepis stand by a heat pulse method. Especially this study has been measured and discussed the diurnal and seasonal trends of heat pulse velocity by changes of radiation, temperature and humidity, differences of heat pulse velocity by direction and depth in stem, differences of heat pulse velocity by dominant, codominant and suppressed trees, diurnal change of heat pulse velocity by change of leaf water potential, sap flow path way in sapwood by dye penetration and amount of daily and annual transpiration in a tree and stand. The results obtained as follows : 1. Relation between heat pulse velocity(V) and sap flow rate(SFR) was established as a equation of SFR=1.37V($r=0.96^{**}$). 2. The sap flow rate presented in the order of dominant, codominant and suppressed tree, respectively. The daily heat pulse velocity was changed by radiation, temperature and vapor pressure deficit. 3. The heat pulse velocity in individual trees did not differ in early morning and in late night, but had some differed from 12 to 16 hours when radiation was relatively high. 4. The heat pulse velocity and leaf water potential showed similar diurnal variation. 5. The seasonal variation of heat pulse velocity was highest in August, but lowest in October and similar value of heat pulse velocity in the other months. 6. The heat pulse velocity in stem by direction was highest in eastern, but lowest in southern and similar velocity in western and northern. 7. The difference of heat pulse velocity in according to depths was highest in 2.0cm depth, medium in 1.0cm depth, and lowest in 3.0cm depth from surface of stem. 8. The sap flow path way in stem showed spiral ascent turning right pattern in five sample trees, especially showed little spiral ascent turning right in lower part than 3m hight above ground, but very speedy in higher than 3m hight. 9. The amount of sap flow(SF) was presented as a equation of SF=1.37AV and especially SF in dominant tree was larger than in codominant or suppressed tree. 10. The amount of daily transpiration was 30.8ton/ha/day and its composition ratio was 83% at day and 17% at night. 11. The amount of stand transpiration per month was largest in August(1,194ton/ha/month), lowest in May (386ton/ha/month). The amount of stand transpiration per year was 3,983ton/ha/year.

  • PDF

Cooling and Thermal Histories of Cretaceous-Paleogene Granites from Different Fault-bounded Blocks, SE Korean Peninsula: Fission-track Thermochronological Evidences (한반도 동남부의 주단층대에 의해 구분된 지질블록별 백악기-고제3기 화강암의 차별적 냉각-지열 이력: 피션트랙 열연대학적 증거)

  • Shin, Seong-Cheon
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.335-365
    • /
    • 2012
  • Fission-track (FT) thermochronological records from SE Korean Cretaceous-Paleogene granitic plutons in different fault-bounded blocks reveal contrasting cooling and later thermal histories. Overall cooling patterns are represented by a monotonous (J-shaped) curve in most plutons except some Cretaceous granites retaining a complicated (N-shaped) path due to post-reset re-cooling. Discriminative cooling rates over different temperature ranges can be explained for individual plutons with respect to relative pluton sizes, differences in initial heat loss depending on country rocks, and the presence and proximity of later igneous activity. Even within a single batholith, cooling times for different isotherms were roughly contemporaneous with respect to positions. Insignificant deviations in cooling ages from two different plutons in succession across the Yangsan fault may suggest their contemporaneity before major horizontal fault movement. The extent of later thermal rise recorded locally along the Yangsan and Dongnae fault zones were reached the Apatite Partial Stability Zone ($70-125^{\circ}C$), but did not exceed $200^{\circ}C$. Thermal alteration from fractured zones in the Yangsan-Ulsan fault junction may suggest a thermal reset above $290^{\circ}C$ resulting a complete reset in FT sphene age (31 Ma), caused by a tectonic subsidence in Early Oligocene. A consistency in FT zircon/apatite ages (24 Ma) may imply a sudden rapid cooling over $200-105^{\circ}C$, plausibly related to the abrupt tectonic uplift of the Pohang-Gampo Block including the fault junction in Late Oligocene. A remarkable trend of lower cooling ages for $300-200-100^{\circ}C$ isotherms (i.e., 19% for FT sphene and K-Ar biotite; 20% for FT zircon; 27% for FT apatite) from the east of the Ulsan fault (Pohang-Gampo Block) comparing to the west of the fault may be attributed to retarded cooling times from the Paleogene granites and also reflected by their partially-reduced apatite ages due to later thermal effects.

Evaluation of Filtration and Backwash Efficiency of Non-point Source Pollution Reduction Facility (장치형 비점오염원 저감시설의 여과 및 역세 효율 평가)

  • Yun, Sangleen;Lee, Yong-Jae;Ahn, Jae-Hwan;Choi, Won-Suk;Lee, Jungwoo;Oh, Hye-Cheol;Kim, Seog-Ku
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.12
    • /
    • pp.664-671
    • /
    • 2017
  • Non-point source pollution is the emission source that unspecifically releases pollutants to water system from unspecific places such as cities, agricultural lands, mountains, and construction sites and its discharge path is not easily identified. Also, it is difficult to design and manage the reduction facilities for the emission quantity is primarily affected from weather conditions like rainfall. Since 2006, the significance of non-point source pollution reduction has been grown in Republic of Korea and this reinforces needs for the installation of reduction facilities. However, because the standards for the installation details and reduction efficiency are not clarified by law, people are preferring technologies that do not require particular maintenance and high expenses. The purpose of this study is to examine and maintain the efficiency of non-point source pollutants reduction facility which uses expended polypropylene as a media. The higher the depth of the media, the less range of variations in the reduction efficiency was observed and the final efficiency was also increased. When the media depth was 60 cm, the average reduction efficiency was 94% and 90% where linear velocities were 10 m/hr and 20 m/hr respectively. The results from 180 minutes operation in 10 m/hr and 20 m/hr of linear velocities were slightly different in head loss changes which were caused by media depth variations. The backwash experiments which were conducted in triplicate showed the reduction efficiency decreased as the time went on because of the media clogging. However, it was found that after the backwashing the reduction efficiency was increased as effective as the efficiency of the initial filtration.

Response of Ground Beetles (Coleoptera: Carabidae) to Vegetation Structure in Wildlife Crossings (생태통로 내부 식생구조에 대한 지표성 딱정벌레류(딱정벌레목: 딱정벌레과)의 반응)

  • Jung, Jong-Kook;Park, Yujeong;Lee, Sun Kyung;Lee, Hyoseok;Park, Young-gyun;Lee, Joon-Ho;Choi, Tae Young;Woo, Donggul
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.2
    • /
    • pp.185-198
    • /
    • 2016
  • Korea has put in significant efforts to increase the number of wildlife crossings between fragmented habitats to prevent loss of biodiversity and to encourage the habitat connectivity in Korea. However, there is a lack of biological data on the effect of vegetation structure in these wildlife crossings and guidelines for design and management of wildlife crossing structures in Korea. Therefore, we selected ground beetle assemblages as model organisms to compare the effect of vegetation structure in wildlife crossings, i.e. bare ground- and shrub-type corridors, in agro-forested landscapes. For this study, 4,207 ground beetles belonging to 33 species were collected through pitfall trapping along the northern forest-corridor-southern forest transects from late April to early September in 2015. Dominant species, abundance, and species richness of ground beetles were significantly higher in the shrub-type corridors than the bare ground-type corridors. Also, the species composition of bare ground-type corridor was significantly different compared to the other habitats such as shrub-type corridor and forests. Similarly, environmental variables were also influenced by vegetation management regimes or trap locations. Collectively, our study clearly indicates that the movement of forest associated ground beetles between forest patches can increase as the vegetation in wildlife crossings becomes complex. Although further studies are needed to verify this, there are indications that the current wildlife crossings that comply with the guidelines may be unfriendly to the movement of ground dwelling arthropods as well as ground beetles. To enhance the ecological function of wildlife crossings, the guidelines need to be rectified as follows: 1) Shrubs or trees should be planted along the corridor verges to provide refuge or movement paths for small mammals and ground dwelling arthropods, and 2) Open spaces should be provided in the middle of the corridors to be used as a path for the movement of large mammals.