DOI QR코드

DOI QR Code

Response of Ground Beetles (Coleoptera: Carabidae) to Vegetation Structure in Wildlife Crossings

생태통로 내부 식생구조에 대한 지표성 딱정벌레류(딱정벌레목: 딱정벌레과)의 반응

  • Jung, Jong-Kook (Division of Forest Insect Pests and Diseases, National Institute of Forest Science) ;
  • Park, Yujeong (Entomology Program, Dept. of Agricultural Biotechnology, Seoul National Univ.) ;
  • Lee, Sun Kyung (Entomology Program, Dept. of Agricultural Biotechnology, Seoul National Univ.) ;
  • Lee, Hyoseok (Division of Forest Insect Pests and Diseases, National Institute of Forest Science) ;
  • Park, Young-gyun (Entomology Program, Dept. of Agricultural Biotechnology, Seoul National Univ.) ;
  • Lee, Joon-Ho (Entomology Program, Dept. of Agricultural Biotechnology, Seoul National Univ.) ;
  • Choi, Tae Young (Division of Conservation Ecology, National Institute of Ecology) ;
  • Woo, Donggul (Division of Conservation Ecology, National Institute of Ecology)
  • 정종국 (국립산림과학원 산림병해충연구과) ;
  • 박유정 (서울대학교 농생명공학부 곤충학전공) ;
  • 이선경 (서울대학교 농생명공학부 곤충학전공) ;
  • 이효석 (국립산림과학원 산림병해충연구과) ;
  • 박영균 (서울대학교 농생명공학부 곤충학전공) ;
  • 이준호 (서울대학교 농생명공학부 곤충학전공) ;
  • 최태영 (국립생태원 생태보전연구실) ;
  • 우동걸 (국립생태원 생태보전연구실)
  • Received : 2016.01.26
  • Accepted : 2016.03.09
  • Published : 2016.04.29

Abstract

Korea has put in significant efforts to increase the number of wildlife crossings between fragmented habitats to prevent loss of biodiversity and to encourage the habitat connectivity in Korea. However, there is a lack of biological data on the effect of vegetation structure in these wildlife crossings and guidelines for design and management of wildlife crossing structures in Korea. Therefore, we selected ground beetle assemblages as model organisms to compare the effect of vegetation structure in wildlife crossings, i.e. bare ground- and shrub-type corridors, in agro-forested landscapes. For this study, 4,207 ground beetles belonging to 33 species were collected through pitfall trapping along the northern forest-corridor-southern forest transects from late April to early September in 2015. Dominant species, abundance, and species richness of ground beetles were significantly higher in the shrub-type corridors than the bare ground-type corridors. Also, the species composition of bare ground-type corridor was significantly different compared to the other habitats such as shrub-type corridor and forests. Similarly, environmental variables were also influenced by vegetation management regimes or trap locations. Collectively, our study clearly indicates that the movement of forest associated ground beetles between forest patches can increase as the vegetation in wildlife crossings becomes complex. Although further studies are needed to verify this, there are indications that the current wildlife crossings that comply with the guidelines may be unfriendly to the movement of ground dwelling arthropods as well as ground beetles. To enhance the ecological function of wildlife crossings, the guidelines need to be rectified as follows: 1) Shrubs or trees should be planted along the corridor verges to provide refuge or movement paths for small mammals and ground dwelling arthropods, and 2) Open spaces should be provided in the middle of the corridors to be used as a path for the movement of large mammals.

최근 서식처 파편화에 의한 생물다양성 감소를 막고 서식처간 연결성을 증진시키기 위해 건설되는 생태통로의 수가 증가하고 있지만, 생태통로 내부의 식재 및 식생 유지 관리에 대한 구체적인 가이드라인과 내부 식생 구조 차이에 따른 생물 이동 영향에 대한 정보는 부족한 실정이다. 따라서 본 연구에서는 지표성 딱정벌레류를 이용하여 동일한 농업-산림 경관에서 육교형 생태통로 상부 식생이 나지 및 초본으로 이루어진 생태통로(나지/초본형)와 관목림이 우거진 생태통로(관목형)에 대한 비교 연구를 수행하였다. 이를 위해 2015년 4월 하순부터 9월 초순까지 생태통로 및 인접한 산림을 따라 함정트랩을 설치하여 33종 4,207개체의 지표성 딱정벌레류를 채집하였다. 지표성 딱정벌레류의 우점종과 지점별 개체수 및 종수는 생태통로 내부의 식생이 복잡한 관목형이 나지/초본형에 비해 더 높은 경향이었으며, 종 구성은 나지/초본형 생태통로의 종 구성은 인근 산림 지역 및 관목형 생태통로에 비해 다른 특징을 보였다. 이와 유사하게 생태통로 내부의 식생 관리 여부는 토양습도와 교목층 울폐도에 영향을 주었고, pH, 초본층 피도 및 교목층울폐도는 함정트랩이 설치된 위치에 따라서도 유의미한 차이를 보였다. 결론적으로 생태통로 내부의 식생이 복잡해지면 산림에 서식하는 지표성 딱정벌레류의 산림 패치간 이동 역시 증가할 것으로 판단된다. 따라서 생태통로의 생태적 기능을 향상시키기 위해서는 통로 가장자리에는 관목 또는 교목을 식재하여 은신처 및 이동통로로 제공하고, 중앙부에는 대형 포유동물이 이동하기 용이한 나지 형태의 통로를 제공하는 형태로 개선될 필요가 있을 것이다.

Keywords

References

  1. Clarke, K.R., Gorley, R.N. (2006) Primer v6: User manual/tutorial, PRIMER-E, Plymouth, pp. 192.
  2. Collinge, S.K. (1998) Spatial arrangement of habitat patches and corridors: clues from ecological field experiments. Landsc. Urban Plan. 42: 157-168. https://doi.org/10.1016/S0169-2046(98)00085-1
  3. Do, Y., Kim, J.Y., Kim, G.-Y., Joo, G.-J. (2014a) Importance of closed landfills as green space in urbanized areas: ecological assessment using carabid beetles. Landsc. Ecol. Eng. 10: 277-284. https://doi.org/10.1007/s11355-013-0223-x
  4. Do, Y., Lineman, M., Joo, G.-J. (2014b) Carabid beetles in green infrastructures: the importance of management practices for improving the biodiversity in a metropolitan city. Urban Ecosyst. 17: 661-673. https://doi.org/10.1007/s11252-014-0348-1
  5. Eggers, B., Matern, A., Drees, C., Eggers, J., Hardtle, W., Assmann, T. (2010) Value of semi-open corridors for simultaneously connecting open and wooded habitats: a case study with ground beetles. Conserv. Biol. 24(1): 256-266. https://doi.org/10.1111/j.1523-1739.2009.01295.x
  6. Fahrig, L. (2003) Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34: 487-515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419
  7. Fujita, A., Maeto, K., Kagawa, Y., Ito, N. (2008) Effects of forest fragmentation on species richness and composition of ground beetles (Coleoptera: Carabidae and Brachinidae) in urban landscapes. Entomol. Sci. 11: 39-48. https://doi.org/10.1111/j.1479-8298.2007.00243.x
  8. Gaublomme, E., Hendrickx, F., Dhuyvetter, H., Desender, K. (2008) The effects of forest patch size and matrix type on changes in carabid beetle assemblages in an urbanized landscape. Biol. Conserv. 141: 2585-2596. https://doi.org/10.1016/j.biocon.2008.07.022
  9. Habu, A. (1967) Fauna Japonica, Carabidae truncatipennes group (Insecta: Coleoptera). Biogeographical Society of Japan, Tokyo. pp. 338.
  10. Habu, A. (1973) Fauna Japonica, Carabidae: Harpalini (Insecta: Coleoptera). Keigaku Publishing Co. Ltd, Tokyo. pp. 430.
  11. Habu, A. (1978) Fauna Japonica, Carabidae: Platynini (Insecta: Coleoptera). Keigaku Publishing Co. Ltd, Tokyo. pp. 447.
  12. Habu, A. (1987) Classification of the Callistini of Japan (Coleoptera, Carabidae). Entomological Review of Japan. 42: 1-36.
  13. Haddad, N.M. (1999a) Corridor and distance effects on interpatch movements: a landscape experiment with butterflies. Ecol. Appl. 9(2): 612-622. https://doi.org/10.1890/1051-0761(1999)009[0612:CADEOI]2.0.CO;2
  14. Haddad, N.M. (1999b) Corridor use predicted from behaviors at habitat boundaries. Amer. Nat. 153: 215-227. https://doi.org/10.1086/303163
  15. Haddad, N.M., Baum, K.A. (1999) An experimental test of corridor effects on butterfly densities. Ecol. Appl. 9(2): 623-633. https://doi.org/10.1890/1051-0761(1999)009[0623:AETOCE]2.0.CO;2
  16. Haddad, N.M., Bowne, D.R., Cunningham, A., Danielson, B.J., Levey, D.J., Sargent, S., Spira, T. (2003) Corridor use by diverse taxa. Ecol. 84(3): 609-615. https://doi.org/10.1890/0012-9658(2003)084[0609:CUBDT]2.0.CO;2
  17. Haddad, N.M., Tewksbury, J.J. (2005) Low-quality habitat corridors as movement conduits for two butterfly species. Ecol. Appl. 15(1): 250-257. https://doi.org/10.1890/03-5327
  18. Joyce, K.A., Holland, J.M., Doncaster, C.P. (1999) Influecnes of hedgerow intersections and gaps on the movement of carabid beetles. Bull. Entomol. Res. 89: 523-531.
  19. Jung, J.-K., Kim, S.T., Lee, S.Y., Park, C.G., Lee, E.H., Lee, J.-H. (2012) Ground beetle (Coleoptera: Carabidae) assemblage in the urban landscape, Korea. J. Ecol. Field Biol. 35(2): 79-89.
  20. Koivula, M.J., Hyyrylainen, V., Soininen, E. (2004) Carabid beetles (Coleoptera: Carabidae) at forest-farmland edges in southern Finland. J. Insect. Conserv. 8: 297-309. https://doi.org/10.1007/s10841-004-0296-9
  21. Koivula, M.J. (2011) Useful model organisms, indicators, or both? Ground beetles (Coleoptera, Carabidae) reflecting environmental conditions. ZooKeys 100: 287-317. https://doi.org/10.3897/zookeys.100.1533
  22. Kwon, Y.J., and Lee S.M. (1984) Classification of the subfamily Carabinae from Korea (Coleoptera: Carabidae). Insecta Koreana, Series 4, Editorial Committee of Insecta Koreana. pp363.
  23. Lassau, S.A., Hochuli, D.F., Gassis, G., Reid, C.A.M. (2005) Effects of habitat complexity on forest beetle diversity: do functional groups respond consistently? Diversity Distrib. 11: 73-82. https://doi.org/10.1111/j.1366-9516.2005.00124.x
  24. Laurance, W.F. (2008) Theory meets reality: How habitat fragmentation research has transcended island biogeographic theory. Biol. Conserv. 141: 1731-1744. https://doi.org/10.1016/j.biocon.2008.05.011
  25. Magura, T., Tothmersz, B., Molnar, T. (2008) A species-level comparison of occurrence patterns in carabids along an urbanisation gradient. Landsc. Urban Plan. 86: 134-140. https://doi.org/10.1016/j.landurbplan.2008.01.005
  26. McCune, B., Grace, J.B. (2002) Analysis of ecological communities. MjM Software Design.
  27. Ministry of Environment (2010) Guidelines for design and management of wildlife crossing structures in Korea. Ministry of Environment, Seoul, Korea. Available from http://webbook.me.kr/DLi-File/077/203004.pdf (assessed 30 October 2015). (in Korean)
  28. Nicholls, C.I., Parrella, M., Altieri, M.A. (2001) The effects of a vegetational corridor on the abundance and dispersal of insect biodiversity within a northern California organic vineyard. Landsc. Ecol. 16: 133-146. https://doi.org/10.1023/A:1011128222867
  29. Noordijk, J., Schaffers, A.P., Heijerman, T., Sykora, K.V. (2011) Using movement and habitat corridors to improve the connectivity for heathland carabid beetles. J. Nat. Conserv. 19: 276-284. https://doi.org/10.1016/j.jnc.2011.05.001
  30. Orrock, J.L., Curler, G.R., Danielson, B.J., Coyle, D.R. (2011) Large-scale experimental landscapes reveal distinctive effects of patch shape and connectivity on arthropod communities. Lands. Ecol. 26: 1361-1372. https://doi.org/10.1007/s10980-011-9656-5
  31. Orrock, J.L., Damschen, E.I. (2005) Corridors cause differential seed predation. Ecol. Appl. 15(3): 793-798. https://doi.org/10.1890/04-1129
  32. Park, J.K. (2004) Subfamily Carabinae in Korea (Coleoptera: Carabidae). Economic Insects of Korea 23. Ins. Koreana Suppl. 30, Junghaeng-Sa, Seoul, pp. 96.
  33. Park, J.-K. (2010) Insect fauna of urban green park in Daegu Metropolitan City, Korea (II). Kor. Turfgrass Sci. 24(2): 182-190. (in Korean with English abstract)
  34. Park, J.-K., Choi, IJ, Park, J, Choi EY (2014) Insect fauna of Korea, vol. 12, no. 16, Ground beetle (Arthropoda: Insecta: Coleoptera: Carabidae: Chlaeniini, Truncatipennes group: Odacanthinae, Lebiinae). National Institute of Biological Resources, Ministry of Environment, Incheon. pp. 111.
  35. Park, J.-K., Park, J (2013) Insect fauna of Korea, vol. 12, no. 13, Ground beetle (Arthropoda: Insecta: Coleoptera: Carabidae: Pterostichinae). National Institute of Biological Resources, Ministry of Environment, Incheon. pp. 98.
  36. Park, J.K. and J.C. Paik (2001) Family Carabidae. Economic Insects of Korea 12. Ins. Koreana Suppl. 19, Suwon, pp. 170. (in Korean)
  37. Pickett, S.T.A., Burch, W.R. Jr, Dalton, S.E., Foresman, T.W., Grove, J.M., Rowntree, R. (1997) A conceptual framework for the study of human ecosystems in urban areas. Urban Ecosyst. 1: 185-199. https://doi.org/10.1023/A:1018531712889
  38. R Development Core Team. (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  39. Rainio, J., Niemela, J. (2013) Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers. Conserv. 12: 487-506.
  40. Resasco, J., Haddad, N.M., Orrock, J.L., Shoemaker, D.W., Brudvig, L.A., Damschen, E.I., Tewksbury, J.J., Levey, D.J. (2014) Landscape corridors can increase invasion by an exotic species and reduce diversity of native species. Ecol. 95(8): 2033-2039. https://doi.org/10.1890/14-0169.1
  41. Seoul Development Institute. (2006) Analysis on the effect of ecological corridor in Seoul and Construction of management manual. Seoul Development Institute, Seoul, Korea. Available from http://www.si.re.kr/sites/default/files/2006-R-22_0.pdf (assessed 30 October 2015). (in Korean with English abstract)
  42. Stork, N.E., McBroom, J., Gely, C., Hamilton, A.J. (2015) New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. PNAS 112: 7519-7523. https://doi.org/10.1073/pnas.1502408112
  43. Sutcliffe, O.L., Thomas, C.D. (1996) Open Corridors Appear to Facilitate Dispersal by Ringlet Butterflies (Aphantopus hyperantus) between Woodland Clearings. Conserv. Biol. 10(5): 1359-1365. https://doi.org/10.1046/j.1523-1739.1996.10051359.x
  44. Tews, J., Brose, U., Grimm, V., Tielborger, K., Wichmann, M.C., Schwager, M., Jeltsch, F. (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J. Biogeogr. 31: 79-92. https://doi.org/10.1046/j.0305-0270.2003.00994.x
  45. Thiele, H.U. (1977) Carabid beetles in their environment. Springer-Verlag, Berlin. pp. 369.
  46. Townsend, P.A., Levey, D.J. (2005) An experimental test of whether habitat corridors affect pollen transfer. Ecol. 86(2): 466-475. https://doi.org/10.1890/03-0607
  47. Vergnes, A., Le Viol, I., Clergeau, P. (2012) Green corridors in urban landscapes affect the arthropod communities of domestic gardens. Biol. Conserv. 145: 171-178. https://doi.org/10.1016/j.biocon.2011.11.002
  48. Vermeulen, H.J.W. (1994) Corridor function of a road verge for dispersal of stenotopic heathland ground beetles Carabidae. Biol. Conserv. 69: 339-349. https://doi.org/10.1016/0006-3207(94)90433-2