• 제목/요약/키워드: path decomposition

검색결과 97건 처리시간 0.026초

트리의 최적 경로 분할을 위한 다항시간 알고리즘 (A Polynomial-time Algorithm to Find Optimal Path Decompositions of Trees)

  • 안형찬
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제34권5_6호
    • /
    • pp.195-201
    • /
    • 2007
  • 트리의 최소단말경로분할이란 트리를 에지가 서로 소인 단말 노드 간 경로들로 분할하되, 가장 긴 경로의 길이를 최소화하는 문제이다. 본 논문에서는 트리의 최소단말경로분할을 $O({\mid}V{\mid}^2$시간에 구하는 알고리즘을 제시한다. 이 알고리즘은 주어진 최적화 문제를 이에 대응하는 결정 문제, 즉 최소단말경로 분할의 비용이 l 이하인지를 결정하는 문제를 이용한 이진 탐색으로 환원한다. 결정 문제는 트리를 한 차례 순회하는 동안 동적 계획법에 의해 해결된다

사용빈도와 의미투명도가 복합명사의 분리처리에 미치는 효과 (Effects of word frequency and semantic transparency on decomposition processes of compound nouns)

  • 이태연
    • 인지과학
    • /
    • 제18권4호
    • /
    • pp.371-398
    • /
    • 2007
  • 이 연구는 의미점화과제와 반복점화과제를 사용하여 사용빈도와 의미투명성이 복합명사의 분리처리 양상에 어떤 영향을 미치는지를 알아보았다. 실험 1에서는 사용빈도에 따라 복합명사의 분리처리 양상이 달라지는지를 검토하였다. 의미점화효과가 복합명사 연상어 조건에서 자극제시시차나 사용빈도와 무관하게 관찰되었으며, 반복점화효과는 부분조건과 전체조건에서 모두 관찰되었지만 부분조건에서 더 큰 반복점화효과를 보였다. 이 결과는 복합명사가 하위 형태소로 분리되어 처리되는 경로와 복합명사 전체로 처리되는 경로가 함께 존재할 가능성을 보여준다. 실험 2에서는 의미투명도에 따라 복합명사의 분리처리 양상이 달라지는지를 검토하였다. 의미점화효과가 복합명사 연상어 조건에서 자극제시시차나 의미투명도에 무관하게 관찰되었으며, 반복점화과제에서도 실험 1b와 유사한 결과를 보였다. 실험 1과 2의 결과는 어휘수준에서 분리처리경로와 전체처리경로를 통해 활성화된 의미가 개념 수준에서 이루어지는 상호작용과정을 통해 복합명사의 의미를 결정함을 시사한다.

  • PDF

효율적 커버리지 경로 계획 및 동적 환경에서의 경로 주행 (Efficient Coverage Path Planning and Path Following in Dynamic Environments)

  • 김시종;강정원;정명진
    • 로봇학회논문지
    • /
    • 제2권4호
    • /
    • pp.304-309
    • /
    • 2007
  • This paper describes an efficient path generation method for area coverage. Its applications include robots for de-mining, cleaning, painting, and so on. Our method is basically based on a divide and conquer strategy. We developed a novel cell decomposition algorithm that divides a given area into several cells. Each cell is covered by a robot motion that requires minimum time to cover the cell. Using this method, completeness and time efficiency of coverage are easily achieved. For the completeness of coverage in dynamic environments, we also propose a path following method that makes the robot cover missed areas as a result of the presence of unknown obstacles. The effectiveness of the method is verified using computer simulations.

  • PDF

다중 무인 항공기 이용 감시 및 탐색 경로 계획 생성 (Path Planning for Search and Surveillance of Multiple Unmanned Aerial Vehicles )

  • 이산하;정원모;김명건;이상필;이충희;김신구;손흥선
    • 로봇학회논문지
    • /
    • 제18권1호
    • /
    • pp.1-9
    • /
    • 2023
  • This paper presents an optimal path planning strategy for aerial searching and surveying of a user-designated area using multiple Unmanned Aerial Vehicles (UAVs). The method is designed to deal with a single unseparated polygonal area, regardless of polygonal convexity. By defining the search area into a set of grids, the algorithm enables UAVs to completely search without leaving unsearched space. The presented strategy consists of two main algorithmic steps: cellular decomposition and path planning stages. The cellular decomposition method divides the area to designate a conflict-free subsearch-space to an individual UAV, while accounting the assigned flight velocity, take-off and landing positions. Then, the path planning strategy forms paths based on every point located in end of each grid row. The first waypoint is chosen as the closest point from the vehicle-starting position, and it recursively updates the nearest endpoint set to generate the shortest path. The path planning policy produces four path candidates by alternating the starting point (left or right edge), and the travel direction (vertical or horizontal). The optimal-selection policy is enforced to maximize the search efficiency, which is time dependent; the policy imposes the total path-length and turning number criteria per candidate. The results demonstrate that the proposed cellular decomposition method improves the search-time efficiency. In addition, the candidate selection enhances the algorithmic efficacy toward further mission time-duration reduction. The method shows robustness against both convex and non-convex shaped search area.

Ab Initio Study on the Thermal Decomposition of CH3CF2O Radical

  • Singh, Hari Ji;Mishra, Bhupesh Kumar;Gour, Nand Kishor
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권12호
    • /
    • pp.2973-2978
    • /
    • 2009
  • The decomposition reaction mechanism of $CH_3CF_2O$ radical formed from hydroflurocarbon, $CH_3CHF_2$ (HFC-152a) in the atmosphere has been investigated using ab-initio quantum mechanical methods. The geometries of the reactant, products and transition states involved in the decomposition pathways have been optimized and characterized at DFT-B3LYP and MP2 levels of theories using 6-311++G(d,p) basis set. Calculations have been carried out to observe the effect of basis sets on the optimized geometries of species involved. Single point energy calculations have been performed at QCISD(T) and CCSD(T) level of theories. Out of the two prominent decomposition channels considered viz., C-C bond scission and F-elimination, C-C bond scission is found to be the dominant path involving a barrier height of 12.3 kcal/mol whereas the F-elimination path involves that of a 28.0 kcal/mol. Using transition-state theory, rate constant for the most dominant decomposition pathway viz., C-C bond scission is calculated at 298 K and found to be 1.3 ${\times}$ 10$^4s{-1}$. Transition states are searched on the potential energy surfaces involving both decomposition channels and each of the transition states are characterized. The existence of transition states on the corresponding potential energy surface are ascertained by performing Intrinsic Reaction Coordinate (IRC) calculation.

Flow Network을 이용한 청소로봇의 최소방향전환 경로계획 (Minimal Turning Path Planning for Cleaning Robots Employing Flow Networks)

  • 남상현;문승빈
    • 제어로봇시스템학회논문지
    • /
    • 제11권9호
    • /
    • pp.789-794
    • /
    • 2005
  • This paper describes an algorithm for minimal turning complete coverage Path planning for cleaning robots. This algorithm divides the whole cleaning area by cellular decomposition, and then provides the path planning among the cells employing a flow network. It also provides specific path planning inside each cell guaranteeing the minimal turning of the robots. The minimal turning of the robots is directly related to the faster motion and energy saving. The proposed algorithm is compared with previous approaches in simulation and the result shows the validity of the algorithm.

멀티로봇에 대한 전체영역 경로계획 (Complete Coverage Path Planning for Multi-Robots)

  • 남상현;신익상;김재준;이순걸
    • 한국정밀공학회지
    • /
    • 제26권7호
    • /
    • pp.73-80
    • /
    • 2009
  • This paper describes a path planning algorithm, which is the minimal turning path based on the shape and size of the cell to clean up the whole area with two cleaning robots. Our method divides the whole cleaning area with each cell by cellular decomposition, and then provides some path plans among of the robots to reduce the rate of energy consumption and cleaning time of it. In addition we suggest how to plan between the robots especially when they are cleaning in the same cell. Finally simulation results demonstrate the effectiveness of the algorithm in an unknown area with multiple robots. And then we compare the performance index of two algorithms such as total of turn, total of time.

격자화된 공간상에서 4중-나무 구조를 이용한 가시성 검사를 바탕으로 한 새로운 경로 계획 알고리즘과 그 개선 방안들 (New Path Planning Algorithm based on the Visibility Checking using a Quad-tree on a Quantized Space, and its improvements)

  • 김정태;김대진
    • 제어로봇시스템학회논문지
    • /
    • 제16권1호
    • /
    • pp.48-52
    • /
    • 2010
  • In this paper, we introduce a new path planning algorithm which combines the merits of a visibility graph algorithm and an adaptive cell decomposition. We quantize a given map with empty cells, blocked cells, and mixed cells, then find the optimal path on the quantized map using a visibility graph algorithm. For reducing the number of the quantized cells we use the quad-tree technique which is used in an adaptive cell decomposition, and for improving the performance of the visibility checking in making a visibility graph we propose a new visibility checking method which uses the property of the quad-tree instead of the well-known rotational sweep-line algorithm. For the more efficient visibility checking, we propose two additional improvements for our suggested method. Both of them are used for reducing the visited cells in the quad-tree. The experiments for a performance comparison of our algorithm with other well-known algorithms show that our proposed method is superior to others.

A Gas Phase Kinetic Study on the Thermal Decomposition of $ClCH_2CH_2CH_2Br$

  • Kim, Sung-Hoon;Choo, Kwang-Yul;Jung, Kyung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권3호
    • /
    • pp.262-269
    • /
    • 1989
  • The gas phase thermal decomposition of 1-bromo-3-chloropropane in the presence of radical inhibitor was studied by using the conventional static system. The mechanism of unimolecular elimination channel is shown below. [...] In this scheme, the total molecular dissociation rate constant, ($k_1\;+\;k_2$), for the decomposition of $BrCH_2CH_2CH_2Cl$ was determined by pyrolyzing the $BrCH_2CH_2CH_2Cl$ in the temperature range of $380-420^{\circ}C$ and in the pressure range of 10∼100 torr. To obtain $k_3\;and\;k_4,\;and\;to\;obtain\;k_1\;and\;k_2$ independently, the thermal decompositions of allyl chloride and allyl bromide were also studied. The Arrhenius parameters for each step are as follows; $log\;A_{\infty}\;=\;14.20(sec^{-1}),\;E_a$ = 56.10(kcal/mol) for reaction path 1; $log\;A_{\infty}\;=\;12.54(sec^{-1}),\;E_a$ = 49.75(kcal/mol) for reaction path 2; $log\;A_{\infty}\;=\;13.41(sec^{-1}),\;E_a$ = 50.04(kcal/mol) for reaction path 3; $log\;A_{\infty}\;=\;12.43(sec^{-1}),\;E_a$ = 52.78(kcal/mol) for reaction path 4; Finally, the experimentally observed pressure dependence of the rate constants in each step is compared with the theoretically predicted values that are obtained by the RRKM calculations.

교통흐름의 수학적 모형 (Mathematical Modeling for Traffic Flow)

  • 이성철
    • 대한안전경영과학회지
    • /
    • 제13권1호
    • /
    • pp.127-131
    • /
    • 2011
  • Even if there are no causing factors such as car crash and road works, traffic congestion come from traffic growth on the road. In this case, estimation of traffic flow helps find the solution of traffic congestion problem. In this paper, we present a optimization model which used on traffic equilibrium problem and studied the problem of inverting shortest path sets for complex traffic system. And we also develop pivotal decomposition algorithm for reliability function of complex traffic system. Several examples are illustrated.