• 제목/요약/키워드: path

검색결과 14,708건 처리시간 0.042초

The path of placement of a removable partial denture: a microscope based approach to survey and design

  • Mamoun, John Sami
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권1호
    • /
    • pp.76-84
    • /
    • 2015
  • This article reviews the topic of how to identify and develop a removable partial denture (RPD) path of placement, and provides a literature review of the concept of the RPD path of placement, also known as the path of insertion. An optimal RPD path of placement, guided by mutually parallel guide planes, ensures that the RPD flanges fit intimately over edentulous ridge structures and that the framework fits intimately with guide plane surfaces, which prevents food collecting empty spaces between the intaglio surface of the framework and intraoral surfaces, and ensures that RPD clasps engage adequate numbers of tooth undercuts to ensure RPD retention. The article covers topics such as the causes of obstructions to RPD intra-oral seating, the causes of food collecting empty spaces that may exist around an RPD, and how to identify if a guide plane is parallel with the projected RPD path of placement. The article presents a method of using a surgical operating microscope, or high magnification (6-8x or greater) binocular surgical loupes telescopes, combined with co-axial illumination, to identify a preliminary path of placement for an arch. This preliminary path of placement concept may help to guide a dentist or a dental laboratory technician when surveying a master cast of the arch to develop an RPD path of placement, or in verifying that intra-oral contouring has aligned teeth surfaces optimally with the RPD path of placement. In dentistry, a well-fitting RPD reduces long-term periodontal or structural damage to abutment teeth.

XML 데이타의 효과적인 검색을 이한 다중 경로 인덱스 (Multi-Path Index Scheme for the Efficient Retrieval of XML Data)

  • 송하주;김형주
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제7권1호
    • /
    • pp.12-23
    • /
    • 2001
  • 확장 경로식은 '$\ast$'문자를 이용하여 여러 개의 경로를 간단하게 나타내기 위해 사용하는 것으로 객체지향 데이타베이스(object-oriented database : OODB)에 저장된 XML 데이타를 검색하는 질의를 표현하기에 유리하다. 본 논문은 이러한 확장 경로식을 포함하는 OQL 질의를 효과적으로 처리하기 위한 인덱스 구조로서 다중 경로 인덱스 기법을 제안한다. 제안하는 기법은 확장 경로식에 포함되는 각각의 단일 경로에 대해 고유한 경로 식별자를 부여한다. 그리고 인덱스 키값과 경로 식별자를 조합하여 저장하므로써 하나의 인덱스만을 이용하여 다수의 경로에 대한 검색과 단일한 경로에 대한 인덱스 기능을 동시에 지원하도록 하였다. 이 기법은 확장된 경로식에 대해 기존 인덱스를 여러 개 사용하는 방법보다 검색 성능을 높일 수 있고 B+-트리 인덱스 구조를 크게 변형하지 않고 사용할 수 있어 실용성이 우수하다.

  • PDF

A Path Generation Algorithm of Autonomous Robot Vehicle By the Sensor Platform and Optimal Controller Based On the Kinematic Model

  • Park, Tong-Jin;Han, Chang-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.399-399
    • /
    • 2000
  • In this paper, path generation using the sensor platform is proposed. The sensor platform is composed two electric motors which make panning and tilting motions. An algorithm fur a real path form and an obstacle length is realized using a scanning algorithm to rotating the sensors on the sensor platform. An ARV (Autonomous Robot Vehicle) is able to recognize the given path by adapting this algorithm. In order for the ARV to navigate the path flexibly, a kinematic model needed to be constructed. The kinematic model of the ARV was reformed around its body center through a relative velocity relationship to controllability, which derives from the nonholonomic characteristics. The optimal controller that is based on tile kinematic model is operated purposefully to track a reference vehicle's path. The path generation algorithm is composed of two parks. On e part is the generating path pattern, and the other is used to avoid an obstacle. The optimal controller is used for tracking the reference path which is generated by recognizing the path pattern. Results of simulation show that this algorithm for an ARV is sufficient for path generation by small number of sensors and for low cost controller.

  • PDF

실차의 거동한계를 고려한 굴착기의 굴착 경로설계 연구 (A Study on Excavation Path Design of Excavator Considering Motion Limits)

  • 신대영
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권2호
    • /
    • pp.20-31
    • /
    • 2021
  • An excavator is a construction machine that can perform various tasks such as trenching, piping, excavating, slope cutting, grading, and rock demolishing. In the 2010s, unmanned construction equipment using ICT technology was continuously developed. In this paper, the path design process was studied to implement the output data of the decision stage, and the path design algorithm was developed. For example, the output data of the decision stage were terrain data around the excavator, excavator mechanism information, excavator hydraulic information, the position and posture of the bucket at key points, the speed of the desired bucket path, and the required excavation volume. The result of the path design was the movement of the hydraulic cylinder, boom arm, bucket, and bucket edge. The core functions of the path design algorithm are the function of avoiding impact during the excavation process, the function to calculate the excavation depth that satisfies the required excavation volume, and the function that allows the bucket to pass through the main points of the excavation process while maintaining the speed of the desired path. In particular, in the process of developing the last function, the node tracking method expressed in the path design table was newly developed. The path design algorithm was verified as this path design satisfied the JCMAS H02 requirement.

복합적인 실내 환경 내 신뢰성 있는 자율 비행을 위한 3차원 장애물 지도 생성 및 경로 계획 알고리즘 (3D Costmap Generation and Path Planning for Reliable Autonomous Flight in Complex Indoor Environments)

  • 김보성;이승욱;박재용;심현철
    • 로봇학회논문지
    • /
    • 제18권3호
    • /
    • pp.337-345
    • /
    • 2023
  • In this paper, we propose a 3D LiDAR sensor-based costmap generation and path planning algorithm using it for reliable autonomous flight in complex indoor environments. 3D path planning is essential for reliable operation of UAVs. However, existing grid search-based or random sampling-based path planning algorithms in 3D space require a large amount of computation, and UAVs with weight constraints require reliable path planning results in real time. To solve this problem, we propose a method that divides a 3D space into several 2D spaces and a path planning algorithm that considers the distance to obstacles within each space. Among the paths generated in each space, the final path (Best path) that the UAV will follow is determined through the proposed objective function, and for this purpose, we consider the rotation angle of the 2D space, the path length, and the previous best path information. The proposed methods have been verified through autonomous flight of UAVs in real environments, and shows reliable obstacle avoidance performance in various complex environments.

확장된 스캔 경로 구조의 성능 평가에 관한 연구 (A Study on the Performance Analysis of an Extended Scan Path Architecture)

  • 손우정
    • 한국컴퓨터정보학회논문지
    • /
    • 제3권2호
    • /
    • pp.105-112
    • /
    • 1998
  • 본 논문에서는 다중 보드를 시험하기 위한 새로운 구조인 확장된 스캔 경로(ESP: Extended Scan Path) 구조를 제안한다. 보드를 시험하기 위한 기존의 구조로는 단일 스캔경로와 다중 스캔 경로가 있다. 단일 스캔경로 구조는 시험 데이타의 전송 경로인 스캔 경로가 하나로 연결되므로 스캔 경로가 단락이나 개방으로 결함이 생기면 나머지 스캔 경로에올바른 시험 데이타를 입력할 수 없다. 다중 스캔 경로 구조는 다중 보드 시험 시 보드마다별도의 신호선이 추가된다 그러므로 기존의 두 구조는 다중 보드 시험에는 부적절하다. 제안된 ESP 구조를 단일 스캔 경로 구조와 비교하면, 스캔 경로 상에 결함이 발생하더라도 그 결함은 하나의 스캔 경로에만 한정되어 다른 스캔 경로의 시험 데이타에는 영향을 주지않는다. 뿐만 아니라, 비스트 (BIST: Built In Self Test)와 IEEE 1149.1 경계면 스캔 시험을 병렬로 수행함으로써 시험에 소요되는 시간을 단축한다. 본 논문에서는 제안한 ESP 구조와 기존 시험 구조의 성능을 비교하기 위해서 수치적 비교를 한다.

  • PDF

Robust Backup Path Selection in Overlay Routing with Bloom Filters

  • Zhou, Xiaolei;Guo, Deke;Chen, Tao;Luo, Xueshan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권8호
    • /
    • pp.1890-1910
    • /
    • 2013
  • Routing overlay offers an ideal methodology to improve the end-to-end communication performance by deriving a backup path for any node pair. This paper focuses on a challenging issue of selecting a proper backup path to bypass the failures on the default path with high probability for any node pair. For existing backup path selection approaches, our trace-driven evaluation results demonstrate that the backup and default paths for any node pair overlap with high probability and hence usually fail simultaneously. Consequently, such approaches fail to derive a robust backup path that can take over in the presence of failure on the default path. In this paper, we propose a three-phase RBPS approach to identify a proper and robust backup path. It utilizes the traceroute probing approach to obtain the fine-grained topology information, and systematically employs the grid quorum system and the Bloom filter to reduce the resulting communication overhead. Two criteria, delay and fault-tolerant ability on average, of the backup path are proposed to evaluate the performance of our RBPS approach. Extensive trace-driven evaluations show that the fault-tolerant ability of the backup path can be improved by about 60%, while the delay gain ratio concentrated at 14% after replacing existing approaches with ours. Consequently, our approach can derive a more robust and available backup path for any node pair than existing approaches. This is more important than finding a backup path with the lowest delay compared to the default path for any node pair.

Development of a Path Generation and Tracking Algorithm for a Korean Auto-guidance Tillage Tractor

  • Han, Xiong-Zhe;Kim, Hak-Jin;Moon, Hee-Chang;Woo, Hoon-Je;Kim, Jung-Hun;Kim, Young-Joo
    • Journal of Biosystems Engineering
    • /
    • 제38권1호
    • /
    • pp.1-8
    • /
    • 2013
  • Purpose: Path planning and tracking algorithms applicable to various agricultural operations, such as tillage, planting, and spraying, are needed to generate steering angles for auto-guidance tractors to track a point ahead on the path. An optimal coverage path algorithm can enable a vehicle to effectively travel across a field by following a sequence of parallel paths with fixed spacing. This study proposes a path generation and tracking algorithm for an auto-guided Korean tractor with a tillage implement that generates a path with C-type turns and follows the generated path in a paddy field. A mathematical model was developed to generate a waypoint path for a tractor in a field. This waypoint path generation model was based on minimum tractor turning radius, waypoint intervals and LBOs (Limit of Boundary Offsets). At each location, the steering angle was calculated by comparing the waypoint angle and heading angle of the tractor. A path following program was developed with Labview-CVI to automatically read the waypoints and generate steering angles for the tractor to proceed to the next waypoint. A feasibility test of the developed program for real-time path tracking was performed with a mobile platform traveling on flat ground. The test results showed that the developed algorithm generated the desired path and steering angles with acceptable accuracy.

Implementing Path-Finding Agents for Simulation Environments

  • Oh, Sang-Keon;Kim, Chang-Hyun;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.93.2-93
    • /
    • 2002
  • $\textbullet$ Design of Path-Finding Agents in Game Programming $\textbullet$ Computational Efficiency vs. Realistic Motion $\textbullet$ Path-Finding by Planning $\textbullet$ Path-Finding by Behavior-based Control $\textbullet$ implementation and Test of Path-Finding Program

  • PDF

강한 역류가 발생했을 때 추적 유도법칙과 비선형 유도법칙을 활용한 무인잠수정의 후진 경로 추종 (Backward Path Following Using Pure Pursuit Guidance and Nonlinear Guidance for UUV under Strong Current)

  • 이주호;김낙완
    • 한국해양공학회지
    • /
    • 제30권1호
    • /
    • pp.32-43
    • /
    • 2016
  • A UUV needs to have a robust path following performance because of unpredicted current disturbances. Because the desired path of a UUV is usually designed by considering the locations of obstacles or geographical features of the operation region, the UUV should stay on the desired path to avoid damage or loss of the vehicle. However, conventional path following methods cannot deal with strong countercurrent disturbances. Thus, the UUV may deviate from the desired path. In order to avoid such deviation, a backward path following method is suggested. This paper proposes a path following method that combines pure pursuit guidance and nonlinear guidance for the UUV under an unpredicted strong ocean current. For a stable path following system, this paper suggests that the UUV adjust its heading to the current direction using the pure pursuit guidance method when the system is in an unstable region, or the UUV follows the desired path with nonlinear guidance. By combining the pure pursuit guidance and nonlinear guidance, it was possible to overcome the drawbacks of each path following method in the reverse path following case. The efficiency of the proposed method is shown through simulation results compared to those of the pure pursuit method and nonlinear guidance method.