• Title/Summary/Keyword: patches

Search Result 1,160, Processing Time 0.023 seconds

An overview of different retrofitting methods for arresting cracks in steel structures

  • Karamloo, Mohammad;Mazloom, Moosa;Ghasemi, Ali
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.4
    • /
    • pp.291-315
    • /
    • 2019
  • Fatigue cracks are inevitable in circumstances in which the cyclic loading exists. Therefore, many of mechanical components are in a risk of being in exposure to fatigue cracks. On the other hand, renewing the facilities or infrastructures is not always possible. Therefore, retrofitting the structures by means of the available methods, such as crack arrest methods is logical and in some cases inevitable. In this regard, this paper considers three popular crack arrest methods (e.g., drilling stop-hole, steel welded patch, and carbon fiber reinforced (CFRP) patch), which have been compared by using extended finite element method (XFEM). In addition, effects in terms of the width and thickness of patches and the configuration of drilling stop holes have been evaluated. Test results indicated that among the considered methods, CFRP patches were the most effective means for arresting cracks. Besides, in the case of arresting by means of drilling stop holes, drilling two holes next to the crack-tip was more effective than blunting the crack-tip by drilling one hole. In other words, the results indicated that the use of symmetric welded metal patches could lead to a 21% increase in fatigue life, as compared to symmetric stop holes. Symmetric CFRP patches enhanced the fatigue life of cracked specimen up to 77%, as compared to drilling symmetric stop holes. In addition, in all cases, symmetric configurations were far better than asymmetric ones.

Vegetation Management Units and Its Landscape Structures of Mt. Cheolma, in Incheon City, Korea

  • Cho, Hyun-Je;Cho, Je-Hyuung
    • The Korean Journal of Ecology
    • /
    • v.25 no.4
    • /
    • pp.205-211
    • /
    • 2002
  • For landscape ecological management of the isolated forestlands in Incheon city located in the western tip of South Korea, the forest vegetation of Mt. Cheolma was classified phytosciologically and mapped out its spatial distribution at a scale of 1:5,000. Characteristics of forest landscape structures were discussed in terms of the number and size of patches obtained by analy zing vegetation map. Units to manage the forest vegetation were categorized into eighteen communities, seventeen groups, and sixteen subgroups. Landscape elements were classified into five types: secondary vegetation, introduced vegetation for forestry (IVF), introduced vegetation for agriculture (IVA), and other elements. Two hundred and ninety-three forest landscape patches covers 443.3ha, of which IVF accounted for 316.8ha(71.5$\%$), the largest portion, secondary vegetation for 101.2ha(22.8$\%$), IVA for 6.2ha(1.4$\%$), and others for 19.1ha(4.3$\%$). The ratio of natural forest elements of 31.9$\%$ showed that this area was mainly comprised of artificially introduced vegetation, such as Robinia pseudoacacia plantation and Pinus rigida plantation. Forest landscape patches have a mean area of 4.5ha, a density of 66.1/100ha, and a diversity index of 0.87. It was estimated that differentiation of patches recognized in community level would be related to human interference and those in subordinate level to natural processes.

A New Operator Extracting Image Patch Based on EPLL

  • Zhang, Jianwei;Jiang, Tao;Zheng, Yuhui;Wang, Jin;Xie, Jiacen
    • Journal of Information Processing Systems
    • /
    • v.14 no.3
    • /
    • pp.590-599
    • /
    • 2018
  • Multivariate finite mixture model is becoming more and more popular in image processing. Performing image denoising from image patches to the whole image has been widely studied and applied. However, there remains a problem that the structure information is always ignored when transforming the patch into the vector form. In this paper, we study the operator which extracts patches from image and then transforms them to the vector form. Then, we find that some pixels which should be continuous in the image patches are discontinuous in the vector. Due to the poor anti-noise and the loss of structure information, we propose a new operator which may keep more information when extracting image patches. We compare the new operator with the old one by performing image denoising in Expected Patch Log Likelihood (EPLL) method, and we obtain better results in both visual effect and the value of PSNR.

Analysis of various composite patches effect on mechanical properties of notched Al-Mg plate

  • Meran, Ahmad P.;Samanci, Ahmet
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.685-692
    • /
    • 2017
  • In this study, the effect of various adhesively bonded composite patches on mechanical properties of notched Al-Mg alloy plates was analyzed. For this purpose firstly, the un-notched and notched specimens were fabricated from 5086 Al-Mg alloys which have been used in armor-plated military vehicles. The surface notches as a flaw were machined with circular cutting tool to form notch aspect ratio a/c=0.15 and notch-to-thickness ratios a/t=0.5 in the radial direction on the test specimens. Then, various composite patches which reinforced by glass, carbon and Kevlar fibers were bonded adhesively at elliptically surface notches. Finally, experimental measurements conducted by applying tensile static loading. The experimental results showed that repairing with composite patches with order of carbon, glass and Kevlar fibers have remarkable effect on tensile strength of the notched plate. Also the finite element models were developed using Abaqus/Explicit code to predict the tensile strength and elongation of unrepaired notched specimen and specimen repaired by carbon fiber composite patch. The comparison between numerical and experimental results showed good agreement between them and proved the accuracy of numerical modeling.

Development of a radiological emergency evacuation model using agent-based modeling

  • Hwang, Yujeong;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2195-2206
    • /
    • 2021
  • In order to mitigate the damage caused by accidents in nuclear power plants (NPPs), evacuation strategies are usually managed on the basis of off-site effects such as the diffusion of radioactive materials and evacuee traffic simulations. However, the interactive behavior between evacuees and the accident environment has a significant effect on the consequential gap. Agent-based modeling (ABM) is a method that can control and observe such interactions by establishing agents (i.e., the evacuees) and patches (i.e., the accident environments). In this paper, a radiological emergency evacuation model is constructed to realistically check the effectiveness of an evacuation strategy using NetLogo, an ABM toolbox. Geographic layers such as radiation sources, roads, buildings, and shelters were downloaded from an official geographic information system (GIS) of Korea, and were modified into respective patches. The dispersion model adopted from the puff equation was also modified to fit the patches on the geographic layer. The evacuees were defined as vehicle agents and a traffic model was implemented by combining the shortest path search (determined by an A * algorithm) and a traffic flow model incorporated in the Nagel-Schreckenberg cellular automata model. To evaluate the radiological harm to the evacuees due to the spread of radioactive materials, a simple exposure model was established to calculate the overlap fraction between the agents and the dispersion patches. This paper aims to demonstrate that the potential of ABM can handle disaster evacuation strategies more realistically than previous approaches.

Crack segmentation in high-resolution images using cascaded deep convolutional neural networks and Bayesian data fusion

  • Tang, Wen;Wu, Rih-Teng;Jahanshahi, Mohammad R.
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.221-235
    • /
    • 2022
  • Manual inspection of steel box girders on long span bridges is time-consuming and labor-intensive. The quality of inspection relies on the subjective judgements of the inspectors. This study proposes an automated approach to detect and segment cracks in high-resolution images. An end-to-end cascaded framework is proposed to first detect the existence of cracks using a deep convolutional neural network (CNN) and then segment the crack using a modified U-Net encoder-decoder architecture. A Naïve Bayes data fusion scheme is proposed to reduce the false positives and false negatives effectively. To generate the binary crack mask, first, the original images are divided into 448 × 448 overlapping image patches where these image patches are classified as cracks versus non-cracks using a deep CNN. Next, a modified U-Net is trained from scratch using only the crack patches for segmentation. A customized loss function that consists of binary cross entropy loss and the Dice loss is introduced to enhance the segmentation performance. Additionally, a Naïve Bayes fusion strategy is employed to integrate the crack score maps from different overlapping crack patches and to decide whether a pixel is crack or not. Comprehensive experiments have demonstrated that the proposed approach achieves an 81.71% mean intersection over union (mIoU) score across 5 different training/test splits, which is 7.29% higher than the baseline reference implemented with the original U-Net.

Herbal Patch Analysis in Korean Patent (국내 한방 패치 특허 현황에 대한 분석연구)

  • Park, Sunju;Woo, Seong-Cheon;Park, Ji-Yeun
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.22 no.1
    • /
    • pp.45-59
    • /
    • 2018
  • Objectives : The purpose of this study is to present trends and contents of herbal Korean Medicine patches by analyzing the herbal patches in Korean patents. Methods : Electronic search for herbal patch patents was conducted in KIPRIS (Korea Intellectual Property Rights Information Service). Korean patents that were registered by January 1, 2018 were selected in study. Patents that were not using herbal medicine or not related to patch were excluded in this study. The applicant, application date, International Patent Classification (IPC), contents and adhesive site of patches, target diseases, model of experiment and extraction methods were analyzed. Results : A total of 17 patents were included in this study. In applicant analysis, 61.5% of applicants were corporations. All IPCs in patents were involved in Section A (Human necessities & Agriculture) and 66.7% of IPCs were A61K (Preparations formedical, dental, ortoiletpurposes). In types of patch, 8 patents were hydrogel patches (47.1%), followed by 3 heating patches (17.6%). Skin related symptoms were the most targeted diseases (52.9%), Human was the most used model in experiments. Solvent extraction and hot water extraction were used frequently, and some patents had no limit for extraction were also existed. Conclusions : The study results will be helpful to diversify formulation of herbal medicine, to expand market scale of patent and to develop new application using Korean medicine. In order to establish sufficient data for utilizing patent technologies, more patent studies providing analyzed patent information are needed.

Generation of Discrete $G^1$ Continuous B-spline Ship Hullform Surfaces from Curve Network Using Virtual Iso-parametric Curves

  • Rhim, Joong-Hyun;Cho, Doo-Yeoun;Lee, Kyu-Yeul;Kim, Tae-Wan
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.2
    • /
    • pp.24-36
    • /
    • 2006
  • Ship hullform is usually designed with a curve network, and smooth hullform surfaces are supposed to be generated by filling in (or interpolating) the curve network with appropriate surface patches. Tensor-product surfaces such as B-spline and $B\'{e}zier$ patches are typical representations to this interpolating problem. However, they have difficulties in representing the surfaces of irregular topological type which are frequently appeared in the fore- and after-body of ship hullform curve network. In this paper, we proposed a method that can automatically generate discrete $G^1$ continuous B-spline surfaces interpolating given curve network of ship hullform. This method consists of three steps. In the first step, given curve network is reorganized to be of two types: boundary curves and reference curves of surface patches. Especially, the boundary curves are specified for their surface patches to be rectangular or triangular topological type that can be represented with tensor-product (or degenerate) B-spline surface patches. In the second step, surface fitting points and cross boundary derivatives are estimated by constructing virtual iso-parametric curves at discrete parameters. In the last step, discrete $G^1$ continuous B-spline surfaces are generated by surface fitting algorithm. Finally, several examples of resulting smooth hullform surfaces generated from the curve network data of actual ship hullform are included to demonstrate the quality of the proposed method.

Gain Enhancement of Series-fed Dipole Pair Antenna Using Director and Parasitic Patches (도파기와 기생 패치를 이용한 직렬-급전 다이폴 쌍 안테나의 이득 향상)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1855-1861
    • /
    • 2017
  • In this paper, the gain enhancement of an SDPA using a director and two parasitic patches is studied. The modified balun is used to increase the bandwidth, whereas the director and two parasitic patches are appended to the SDPA to enhance the gain in the middle and high frequency bands. The effects of the distance between the director and parasitic patches on the antenna performance are analyzed, and the SDPA with a gain over 7 dBi at 1.54-2.99 GHz band is designed. The proposed SDPA is fabricated on an FR4 substrate with a dimension of $90mm(L){\times}135mm(W)$ in order to validate its performance. The fabricated antenna shows a frequency band of 1.56-3.10 GHz for a VSWR < 2, and it is confirmed by measurement that gain maintains over 7 dBi in the frequency range of 1.54-3.00 GHz.

A Time-Series Analysis of Landscape Structural Changes using the Spatial Autocorrelation Method - Focusing on Namyangju Area - (공간자기상관분석을 통한 시계열적 경관구조의 변화 분석 - 남양주지역을 대상으로 -)

  • Kim, Heeju;Oh, Kyushik;Lee, Dongkun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.3
    • /
    • pp.1-14
    • /
    • 2011
  • In order to determine temporal changes of the urban landscape, interdependence and interaction among geo-spatial objects can be analyzed using GIS analytic methods. In this study, to investigate changes in the landscape structure of the Namyangju area, the size and shape of landscape patches, and the distance between the patches were analyzed with the Spatial Autocorrelation Method. In addition, both global and local spatial autocorrelation analyses were conducted. The results of global Moran's I revealed that both patch size and shape index transformed to a more dispersed pattern over time. Next, the local Moran's I of patch size in all time series determined that almost all patches were of a high-low pattern. Meanwhile, the local Moran's I of the shape index was found to have changed from a high-high pattern to a high-low pattern in time series. Finally, as time passes, the number of hot spot patches about size and shape index had been decreased according to the results of hot spot analysis. These changes appeared around the development projects in the study area. From the results of this study, degradation of landscape patches in Namyangju were ascertained and their specific areas were delineated. Such results can be used as useful data in selecting areas for conservation and for preparing plans and strategies in environmental restoration.