• Title/Summary/Keyword: pasting viscosity

Search Result 282, Processing Time 0.023 seconds

Comparison of Amylogram Properties among Several Subspecies of Rice (여러 아종 벼 품종들간 아밀로그램 특성 비교)

  • Kwak Tae-Soon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.3
    • /
    • pp.186-190
    • /
    • 2005
  • This experiment was conducted to collect the basic information on the varietal diversity in amylogram properties of 3 different rice sub-species under tropical conditions in IRRI 2001 wet season based upon correlation and principal component analysis. The peak viscosity and breakdown property of Tongil type, i.e.; temperate Indica species showed higher similarity with Japonica type species rather than typical Indica and tropical japonica types. The amylogram properties such as final viscosity, pasting consistency and setback of Tongil type varieties were lower than those of typical Indica and tropical japonica types. The peak viscosity showed positive correlation with trough, while the breakdown showed negative correlation with setback in all tested 3 rice subspecies. The first principal component was applicable to increase the gelatinization temperature, final viscosity, pasting consistency and setback, and applicable to decrease the peak viscosity and breakdown. Varietal classification by the principal component score of each pedigree could be applied to the interpretation of the community by the scatter diagram for the amylogram properties to the different sub-species of rice at IRRI conditions.

Flour Quality Characteristics of Korean Waxy Wheat Lines

  • Hong, Byung-Hee;Park, Chul-Soo;Baik, Byung-Kee;Ha, Yong-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.5
    • /
    • pp.360-366
    • /
    • 2001
  • Flour physicochemical properties of six Korean waxy wheat lines and their parental plants, including Kanto 107 and BaiHuo, which have partially null in GBSS (granule bound starch synthase), were evaluated in this study. The very low amylose content (3.20%) of Korean waxy wheat lines, which had been influenced by the null in all three GBSS isoforms encoded by three Wx loci, could result in the higher starch swelling power (25.15%), lower starch and flour pasting temperature (61.37$^{\circ}C$; 65.85$^{\circ}C$), and higher starch pasting peak viscosity and breakdown (246.60 RVU; 161.50 RVU) than those of their parental plants. In addition to high swelling and pasting properties, Korean waxy wheat lines had the higher protein content (12.80%), alkaline water retention capacity (97.39%), SDS sedimentation volume (80.33 $m\ell$) and damaged starch content (4.35 %) than those of their parental plants.

  • PDF

Relationship between rice grain quality traits and starch pasting properties using early maturing rice cultivars in Chungnam plain area

  • Yun, Yeo-Tae;Chung, Chong-Tae;Lee, Jae-Chul;Lee, Young-Ju;Na, Han-Jung;Lee, Kwang-Won;Yoon, Young-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.3
    • /
    • pp.151-158
    • /
    • 2015
  • This study was conducted to know the variation and relationship of rice grain quality and starch pasting properties by transplanting times. Two early maturing rice cultivars which accounted for the most area of early maturing rice cultivar in Chungnam province were used. The experiment was laid out in a split-plot design with 3 replications. The main plot consisted of three transplanting times viz. early (April 25), ordinary (May 25) and late (June 25) with sub-plots containing two cultivars. According to the transplanting times, most of rice grain quality and starch pasting properties showed significant difference and Joami showed higher grain quality than Unkwang in all transplanting times. Especially, rice grain quality was improved when transplanted late, showing high head rice and glossiness of cooked rice due to the lower mean temperature during grain filling stage. Glossiness of cooked rice was positively correlated with head rice ratio, amylose content and setback value, and negatively correlated with chalky rice ratio and protein content. The highest positive and negative correlation were observed between breakdown value and peak viscosity ($r=0.98^{**}$), and breakdown and setback ($r=-0.94^{**}$), respectively. These results provide some information for rice researchers and producers producing cultivars with an improved quality, suggesting that rice quality is highly influenced by temperature at grain filling stage, and transplanting times is crucial in improving rice quality. In addition, starch pasting properties are useful for determining rice quality because rice grain quality and starch pasting properties are dependent on each other.

Physicochemical, structural, pasting, and rheological properties of potato starch isolated from different cultivars (품종별 감자전분의 이화학적, 구조적, 페이스팅 및 유변학적 특성)

  • Lee, Jungu;Choi, Moonkyeung;Kang, Jinsoo;Chung, Yehji;Jin, Yong-Ik;Kim, Misook;Lee, Youngseung;Chang, Yoon Hyuk
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.360-368
    • /
    • 2017
  • The objective of this research was to elucidate the physicochemical, structural, pasting and rheological properties of potato starch isolated from a foreign potato cultivar ('Atlantic') and new domestic potato cultivars ('Goun', 'Sebong', and 'Jinsun'). Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and one-dimensional nuclear magnetic resonance (1D NMR) showed that the structural properties of potato starch did not vary significantly with cultivars. RVA analysis demonstrated that the 'Atlantic' starch had the highest breakdown viscosity among all potato starches. In steady shear rheological analysis, all potato starch dispersions showed shear-thinning behaviors (n =0.63-0.72) at $25^{\circ}C$. The highest apparent viscosity (${\eta}_{a,5}$), consistency index (K), and yield stress (${\sigma}_{oc}$) were observed in the 'Goun' starch dispersion. In dynamic shear rheological analysis, storage modulus (G') and loss modulus (G") values of new domestic potato starch dispersions were higher than those of the 'Atlantic' starch dispersion.

Effect of Commercial Multi-Emulsifiers on Rheological Properties of Cake Flour (상업용 복합유화제가 박력분의 물성에 미치는 영향)

  • Bok, Jin-Hung;Hwang, Sung-Yeon;Lee, Jeong-Hoon
    • Culinary science and hospitality research
    • /
    • v.13 no.3
    • /
    • pp.158-165
    • /
    • 2007
  • This study was carried out to evaluate the rheological properties of cake flour with 3% of commercial multi-emulsifiers(P company, W company, O company) based on flour. Rheological properties were analyzed by Falling number, RVA, Alveograph and Farinograph. In Falling number, viscosity of cake flour with multi-emulsifiers was increased. In RVA, initial pasting temperature was increased by adding multi-emulsifier except for W company. and peak viscosity, final viscosity and setback were increased but breakdown was decreased. In Alveogram, P and P/L value were decreased but L and G value were increased. In Farinogram, water absorption was decreased but dough development time was increased and stability was increased except for P company.

  • PDF

Characteristics Variation of Amylogram Properties by the Rapidity of Grain Filling in Rice Recombinant Inbred Line's Populations (벼 재조합자식계통의 초기급속등숙 속도에 따른 아밀로그램 특성변이)

  • Kwak, Tae Soon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.3
    • /
    • pp.291-294
    • /
    • 2008
  • Amylogram properties such as peak viscosity, hot viscosity, cool viscosity, breakdown, pasting consistency and setback were investigated by the Rapid Visco Analyzer and interpreted by the relationship among amylogram properties according to the varietal groups classified by the rapidity of grain filling (RGF) which was calculated by the percentage of grain weight at 15 days after heading to 40 days after heading. The 164 rice recombinant inbred lines from the cross of Milyang23 and Gihobyeo were used to get the basic information regarding the amylogram properties. The used recombinant inbred lines could be grouped into 4 varietal groups such as slow maturing (less than 40% of RGF), mid-slow maturing (41-60% of RGF),mid-fast maturing (61-80% of RGF), and fast maturing (more than 81% of RGF) groups based on the RGF. The peak viscosity and setback showed regular tendency according to the varietal groups classified by the RGF. Positive significant correlations were found between pasting consistency and setback, however negative significant correlations were found between breakdown and setback in all varietal groups.

Quality Characteristics of White Bread with Arrowroot Powder (칡 분말을 첨가한 식빵의 품질 특성)

  • Han, Gyusang;Hwang, Seong-Yun;Rho, Sujung
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.23 no.6
    • /
    • pp.778-788
    • /
    • 2013
  • The objective of this study was to investigate the effects and availability of arrowroot powder in making white bread. The characteristics of pasting, farinogram and alveogram of the dough containing arrowroot powder were analyzed. Further, the physicochemical properties of white bread were analyzed by different mixing ratios (0, 3, 5 and 7%) of arrowroot powder during storage periods. When 7% of arrowroot powder was added, the initial pasting temperature of the dough by using a RVA (rapid visco analyzer) was significantly increased. Peak viscosity, holding strength, break down, final viscosity and set back were decreased by increasing added arrowroot powder. With the increasing amounts of arrowroot powder, the values of farinogram and alveogram parameter for the dough showed a tendency to decrement. The texture profile analysis of the white bread revealed that hardness, springiness, cohesiveness and gumminess were increased by adding arrowroot powder and further, the storage time was longer. By increasing the amount of added arrowroot powder, the L value of the white bread was decreased, whereas the a, b value were increased. In the sensory evaluation, the white bread of the control and that of the added 3% arrowroot powder showed the highest preference in total score.

Quality Characteristics of Seolgiddeok added with Whey Protein Concentrate (WPC) Powder (WPC 분말이 첨가된 설기떡의 품질 특성)

  • Kim, Chan-Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.3
    • /
    • pp.436-445
    • /
    • 2015
  • The effects of substituting whey protein concentrate (WPC) powder for rice flour in the preparation of seolgiddeok were determined by objective and subjective tests. Milk whey is drained from milk curd as a by-product of the cheese manufactureing process. Whey protein is known as a good nutritional source and is a functional material for many processed foods. WPC contains more than 80% whey protein. The moisture content decreased gradually during storage and the decrease in moisture was less in the control than in the WPC powder substituted groups. The color lightness (L) decreased significantly as the amount of WPC powder increased, wherease redness (a) and yellowness (b) both increased. Texture analyses revealed that the hardness, chewiness, gumminess and adhesiveness of seolgiddeok tended to increase in proportion to the amount of WPC powder in the formula. Seolgiddeok gelatinization was investigated by amylographing. Initial pasting temperature, peak viscosity, hot pasting viscosity and breakdown were low in seolgiddeok prepared with WPC powder substituted for rice flour. Setback had the lowest value in the control. Sensory evaluations revealed that, seolgiddeok prepared with 3% WPC powder had the highest overall acceptability score. These results indicated that WPC seolgiddeok with 3% WPC powder has the best quality.

Physicochemical Properties of Mung Bean Starch Paste, a Main Ingredient of Omija-eui

  • Jang, Keum-Il;Han, Hyun-Jeong;Lee, Kwang-Yeon;Bae, In-Young;Lee, Ji-Yeon;Kim, Mi-Kyung;Lee, Hyeon-Gyu
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.991-995
    • /
    • 2009
  • As a principle ingredient in omija-eui, the physicochemical properties of mung bean starch (MBS) paste were investigated and compared to those of rice and corn starch. The amylose and the protein content of MBS were higher than those of rice or corn starch while the total sugar content and the swelling power of MBS were lower. In addition, the clarity of MBS paste was higher than either rice or corn starch paste. Regarding pasting properties, the peak viscosity and cool paste viscosity of MBS were higher than those of either rice or corn starch. During the freeze-thaw cycle, MBS exhibited higher degree of syneresis than corn and rice starch, which decreased with high starch concentration and heating temperature. The paste properties and freeze-thaw stability of MBS showed a potential for improving the quality of omija-eui.

Molecular Characteristics and Functional Properties of Barley Starches with Varying Amylose Content

  • You, Sang-Guan;Kim, Sang-Moo
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.3
    • /
    • pp.207-213
    • /
    • 2005
  • Molecular structures and functional properties of starches isolated from normal, waxy, and zero amylose barleys were examined. Amylopectins from zero amylose starch had the largest molecular weight $(M_w)$, whereas those from high amylose starch, the smallest. A good correlation between the $(M_w)$ and the radius of gyration $(R_g)$ was observed among amylopectins from various starches, indicating similar polymeric conformation in solution even with the differences in the $(M_w)$. The debranched amylopectin molecules from different types of barley starches exhibited similar profiles, implying that the packing geometry of double helices in the different types of barley starches may be similar. Zero amylose starch showed the highest peak viscosity (326 RVU) in RV A viscograms at lower pasting temperature $(67.6^{\circ}C)$, compared to normal and high amylose starches. Relationship between RVA peak viscosity and amylose content suggested that the presence of amylose inhibited the development of granular swelling of barley starches during cooking. A rapid retrogradation, traced by differential scanning calorimetry (DSC) and strain-controlled rheometry, occurred in the high amylose starch sample during storage, while zero amylose starch showed a very good resistance to retrogradation, indicating excellent storage stability.