• Title/Summary/Keyword: past climate change

Search Result 366, Processing Time 0.029 seconds

Characteristics of allergic pollens and the recent increase of sensitization rate to weed pollen in childhood in Korea (알레르기 화분의 특성과 최근 소아에서 잡초류 화분의 감작률 증가)

  • Oh, Jae-Won
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.4
    • /
    • pp.355-361
    • /
    • 2008
  • Pollen is very important causing factor for allergy such as allergic rhinitis, allergic conjunctivitis, and asthma, and pollen allergy has a remarkable clinical impact all over Korea. The main pollination period covers about half the year, from spring to autumn, and the distribution of airborne pollen taxa of allergological interest is related to pollen season dynamics. Korean academy of pediatric allergy and respiratory diseases (KAPARD) has evaluated the pollen characteristics and nationwide pollen count for over 10 years since 1997. Airborne particles carrying allergens were collected daily from nationwide 8 stations (Seoul, Guri, Cheongju, Daegu, Kwangju, Busan, Kangneung, and Jeju) by using 7 days-Burkard sampler (Burkard Manufacturing Co Ltd, Hertfordshire, UK) in South Korea (July 1, 1997-June 30, 2007). They were counted and recorded along with the meteorological factors daily. Tree pollen is a major airborne allergen in spring, grass is most common in summer, and weed pollen is major pollen in autumn in Korea. There has two peak seasons for pollen allergy, as summer and autumn. There is some evidence suggesting that the prevalence of allergic diseases in Korea has been on the increase in the past decade. However, recent findings of the phase I and II studies of the international Study of Asthma and Allergies in Childhood (ISAAC) study showed the absence of increases or little changes in prevalence of asthma symptoms and diagnosis rates in Korea, whereas the prevalence of allergic rhinitis and atopic dermatitis were increased. We reported the evidence that sensitization rate to weed pollen has been increased yearly since 1997 in childhood. Climate change and air pollution must be the major causing factors for the increase of pollen counts and sensitization rate to pollen. Climate change makes the plants earlier pollination and persisting pollination longer. In conclusion, data on pollen count and structure in the last few years, the pathogenetic role of pollen and the interaction between pollen and air pollutants with climate change gave new insights into the mechanism of respiratory allergic diseases in Korea.

Changes in Localized Heavy Rain that Cause Disasters Due to Climate Crisis - Focusing on Gwangju (기후 위기로 인한 재난을 야기하는 집중호우 변화 - 광주광역시를 중심으로)

  • Kim, Youn-Su;Chang, In-Hong;Song, Kwang-Yoon
    • Journal of Integrative Natural Science
    • /
    • v.14 no.4
    • /
    • pp.162-175
    • /
    • 2021
  • Recently, due to global warming, the average temperature of the earth has risen, and the glaciers in the Antarctic and Arctic melt, leading to a rise in sea level, which is accompanied by powerful natural disasters such as strong typhoons and tsunamis around the world. Accordingly, a precipitation in summer in Korea also increased, and changes in the form of precipitation were showed with the increase. Compared to the past, the frequency of localized heavy rain is increasing, and the damage from flooding and flooding is increasing day by day. In this study, based on the precipitation data measured in hours from May to September from 2016 to 2021 according to the change in the precipitation form, according to the nature of the torrential rain investigated the change in the summer precipitation form. In addition, the trend of localized heavy rain from 2016 to 2021 was confirmed by classifying them into two types: localized heavy rains caused by cyclones and weather front, and by typhoons and large-scale cyclones. Through this, the change in precipitation due to the climate crisis should not be viewed as a single phenomenon, it should be reflected and discussed on our life focused on scientific and technological development, and it should be used as a stepping stone for realizing a humanistic.

Current Discussions on International Carbon Markets under the Post-2020 Climate Change Regime and Its Implications (신기후체제 하의 국제탄소시장에 관한 최신 논의 현황과 시사점)

  • Kim, Gilwhan;Lee, Sanglim;Lee, Jiwoong
    • Journal of Climate Change Research
    • /
    • v.8 no.1
    • /
    • pp.73-80
    • /
    • 2017
  • This study sees the past, present and future of the international carbon market. It is expected that it is not until 2020 and beyond before the international carbon market is settled by international consensus, and it is too early to picture the international carbon market at this point. Instead, this study focuses on analyzing the content of Article 6 of the Paris Convention, being fully aware of the uncertainties surrounding the international carbon market and can only be a step in determining the future of the international carbon market. In the future, the international negotiations will be under fierce competition of countries, each of which aims to make their advantageous system or mechanism recognized internationally Therefore, it is necessary for Korea to devise a system that can maximize the national interest and try to be recognized in the international society. To accomplish this, the following tasks are required at the present stage. First, we need to include the basic directions for the reduction using the international carbon market in the preparation of the roadmap for GHG reduction in Korea. Based on the directions presented in the roadmap for reducing GHG emissions, Korea should set up a government-wide plan on the international carbon market. In addition, a long-term TF should be formed to enact such plans in the international community. The international carbon market is an issue that several professional fields overlap, and it is indeed difficult to pursue by a single ministry. Therefore, it is necessary to create and strengthen the TF that can cope immediately with the international movement.

Development of Algorithm Patterns for Identifying the Time of Abnormal Low Temperature Generation (이상저온 발생 시점 확인을 위한 알고리즘 패턴 개발)

  • Jeongwon Lee;Choong Ho Lee
    • Journal of Industrial Convergence
    • /
    • v.21 no.8
    • /
    • pp.43-49
    • /
    • 2023
  • Since 2018, due to climate change, heat waves and cold waves have caused gradual damage to social infrastructure. Since the damage caused by cold weather has increased every year due to climate change in recent 4 years, the damage that was limited to a specific area is now appearing all over the country, and a lot of efforts are being concentrated from experts in various fields to minimize this. However, it is not easy to study real-time observation of sudden abnormal low temperature in existing studies to reflect local characteristics in discontinuously measured data. In this study, based on the weather-related data that affects the occurrence of cold-weather damage, we developed an algorithm pattern that can identify the time when abnormal cold temperatures occurred after searching for weather patterns at the time of cold-weather damage. The results of this study are expected to be of great help to the related field in that it is possible to confirm the time when the abnormal low temperature occurs due to the data generated in real time without relying on the past data.

Progress of Multipurpose and Proactive Rainwater Management in Korea

  • Han, Mooyoung
    • Environmental Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.65-69
    • /
    • 2013
  • Despite the most severe weather and geological conditions, Korean people in earlier times were successful in maintaining sustainable water supplies because they understood the importance of rainwater management, and developed technologies and a philosophy which were needed to live under such circumstances. Recently, the Korean people have suffered frequent incidence of flood damage and drought, and have gradually started to remind themselves of the lessons of the past, which can be described as proactive, multipurpose rainwater management. Most of the problems associated with water and energy can be solved by the integration of rainwater management practices. The concept of multipurpose rainwater management and two examples of its practice are discussed. One is a design for a multipurpose rainwater tank which has been used in a building project, and is based on Korean philosophy. Secondly, a regulation was promulgated recently in Seoul that requires the building of rainwater tanks in new buildings over a certain size. The primary purpose is for the prevention of flooding, but water conservation is a secondary intention. Two examples of proactive rainwater management are discussed, one being public involvement in rainwater management, and the second being the rainwater piggy bank microcredit project. In order to maintain sustainability, to meet the requirements of the Millennium Development Goals, and to be prepared for the effects of climate change, it is expected that multipurpose and proactive rainwater management will be a very effective approach for both developing countries and developed countries. A worldwide network of scientific researchers, as well as a great number of professions, has suggested the promotion of rainwater management.

Technology Competitiveness Analysis of New & Renewable Energy in Major Countries (주요국의 신재생에너지 분야 기술경쟁력 분석 연구)

  • Ha, Su-Jin;Choi, Ji-Hyeok;Oh, Sang Jin
    • New & Renewable Energy
    • /
    • v.18 no.3
    • /
    • pp.72-84
    • /
    • 2022
  • As the threat of climate change escalates, 'net-zero' has become a priority for the international community, and the use of new and renewable energy sources is expected to play a significant role in reaching international carbon neutrality. Here, we evaluate technological competitiveness in terms of implementation and technology by analyzing scientific literature and patents in the new and renewable energy fields of five major countries. For the past 10 years (2009-2019), the most active areas of new and renewable energy research and development have been solar power, wind power, waste, and fuel cells. China is the forerunner in implementation, whereas the United States has the most advanced technology. Portfolio analysis revealed that Korea's fuel cell, the United States' bioenergy, China's waste, Japan's solar and fuel cell, and the European Union's wind power have shown to be in Star Field respectively. Technological competitiveness analysis found that Korea is lagging behind other countries in the new and renewable energy sector, and needs to set a new direction for future carbon-neutral research and development, investment, and policy.

Evaluation of Agro-Climatic Index Using Multi-Model Ensemble Downscaled Climate Prediction of CMIP5 (상세화된 CMIP5 기후변화전망의 다중모델앙상블 접근에 의한 농업기후지수 평가)

  • Chung, Uran;Cho, Jaepil;Lee, Eun-Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.108-125
    • /
    • 2015
  • The agro-climatic index is one of the ways to assess the climate resources of particular agricultural areas on the prospect of agricultural production; it can be a key indicator of agricultural productivity by providing the basic information required for the implementation of different and various farming techniques and practicalities to estimate the growth and yield of crops from the climate resources such as air temperature, solar radiation, and precipitation. However, the agro-climate index can always be changed since the index is not the absolute. Recently, many studies which consider uncertainty of future climate change have been actively conducted using multi-model ensemble (MME) approach by developing and improving dynamic and statistical downscaling of Global Climate Model (GCM) output. In this study, the agro-climatic index of Korean Peninsula, such as growing degree day based on $5^{\circ}C$, plant period based on $5^{\circ}C$, crop period based on $10^{\circ}C$, and frost free day were calculated for assessment of the spatio-temporal variations and uncertainties of the indices according to climate change; the downscaled historical (1976-2005) and near future (2011-2040) RCP climate sceneries of AR5 were applied to the calculation of the index. The result showed four agro-climatic indices calculated by nine individual GCMs as well as MME agreed with agro-climatic indices which were calculated by the observed data. It was confirmed that MME, as well as each individual GCM emulated well on past climate in the four major Rivers of South Korea (Han, Nakdong, Geum, and Seumjin and Yeoungsan). However, spatial downscaling still needs further improvement since the agro-climatic indices of some individual GCMs showed different variations with the observed indices at the change of spatial distribution of the four Rivers. The four agro-climatic indices of the Korean Peninsula were expected to increase in nine individual GCMs and MME in future climate scenarios. The differences and uncertainties of the agro-climatic indices have not been reduced on the unlimited coupling of multi-model ensembles. Further research is still required although the differences started to improve when combining of three or four individual GCMs in the study. The agro-climatic indices which were derived and evaluated in the study will be the baseline for the assessment of agro-climatic abnormal indices and agro-productivity indices of the next research work.

Application of Sedimentary Neodymium Isotopes to the Reconstruction of the Arctic Paleoceanography (퇴적물의 네오디뮴 동위원소 비를 활용한 북극 고환경 복원)

  • Kwangchul Jang;Seung-Il Nam
    • Ocean and Polar Research
    • /
    • v.45 no.2
    • /
    • pp.89-102
    • /
    • 2023
  • Climate and environmental changes in the Arctic Ocean due to global warming have been linked to extreme climate change in mid-latitude regions, including the Korean Peninsula, requiring a better understanding of the Arctic climate system based on the paleo-analog. This review introduces three paleoenvironmental research cases using neodymium isotopes (143Nd/144Nd, εNd) measured on two different fractions of marine sediments: silicate-bound 'detrital' and Fe-Mn oxide-dominated 'authigenic' fractions. In the first case, detrital εNd in core HH17-1085-GC on the continental shelf off northern Svalbard was used for tracing changes in sediment provenance and associated glacier behavior over the last 16.3 ka. The second case showed the potential use of authigenic εNd as a quasi-conservative water mass tracer. Three prominent εNd peaks and troughs observed in core PS72/410-1 from the Mendeleev Ridge in the western Arctic Ocean over the past 76 ka suggested episodic meltwater discharge events during 51~46, 39~35 and 21~13 ka BP. The last case proposed the use of the difference between authigenic and detrital εNd as a proxy for reconstructing glacier fluctuation. The idea is based on the assumption that enhanced glacial erosion during glacier advances can supply sufficient freshly-exposed rock substrate for incongruent weathering, potentially leading to greater isotopic decoupling between bedrock and dissolved weathering products as recorded in detrital and authigenic εNd, respectively. Thus, it would be worthwhile to take advantage of sedimentary εNd to improve our understanding of past environmental changes in polar regions.

(Technical Note) Introduction of PMIP4 Experimental Design for Simulating Quaternary Climates ((기술노트) PMIP4의 제4기 기후 재현 실험 소개)

  • Sang-Yoon Jun;Seong-Joong Kim
    • The Korean Journal of Quaternary Research
    • /
    • v.33 no.1_2
    • /
    • pp.49-58
    • /
    • 2021
  • In the Paleoclimate Modeling Intercomparison Project phase 4 (PMIP4), various experiments for quaternary climatic change are being carried out along with the Coupled Model Intercomparison Project phase 6 (CMIP6). With the CMIP6 preindustrial climate experiment (piControl), the equilibrium climate simulations of 6 ka Holocene experiment (midHolocene), 21 ka Last Glacial Maximum experiment (lgm), and 127 ka Last Interglacial experiment (lig127k) experiment, and transient climate simulations of 850-1849 Common Era Last Millennium experiment (past1000), 21-9 ka last deglaciation, and 140-127 ka penultimate deglaciation experiment have been carried out under PMIP4 protocols by several modeling groups. In this technical note, important physical parameters and boundary conditions of these Tier 1 experiments and a list of additional Tier 2 and 3 experiments are summarized.

Historical changing of flow characteristics over Asian river basins

  • Ha, Doan Thi Thu;Kim, Tae-Son;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.118-118
    • /
    • 2020
  • This study investigates the change of flow characteristics over 10 Asian river basins in the past 30 years (1976-2005). The variation is estimated from The Soil and Water Assessment Tool (SWAT) model outputs based on reanalysis data which was bias-corrected for Asian monsoon reagion. The model was firstly calibrated and validated using observed data for daily streamflow. Four statistical criteria were applied to evaluate the model performance, including Coefficient of determination (R2), Nash - Sutcliffe model efficiency coeffi cient (NSE), Root mean square error-observations standard deviation ratio (RSR), and Percentage Bias (PBIAS). Then parameters of the model were applied for the historical period 1976-2005. The estimates show a temporal non-considerable increasing rate of daily streamflow in most of the basins over the past 30 years. The difference of monthly discharge becomes more significant during the months in the wet season (June to September) in all basins. The seasonal runoff shows significant difference in Summer and Autumn, when the rainfall intensity is higher. The line showing averaged runoff/rainfall ratio in all basins is sharp, presenting high variation of seasonal runoff/rainfall ratio from season to season.

  • PDF