• 제목/요약/키워드: passive seismic control system

검색결과 93건 처리시간 0.028초

Experimental verification of leverage-type stiffness-controllable tuned mass damper using direct output feedback LQR control with time-delay compensation

  • Chu, Shih-Yu;Yeh, Shih-Wei;Lu, Lyan-Ywan;Peng, Chih-Hua
    • Earthquakes and Structures
    • /
    • 제12권4호
    • /
    • pp.425-436
    • /
    • 2017
  • Vibration control using a tuned mass damper (TMD) is an effective technique that has been verified using analytical methods and experiments. It has been applied in mechanical, automotive, and structural applications. However, the damping of a TMD cannot be adjusted in real time. An excessive mass damper stroke may be introduced when the mass damper is subjected to a seismic excitation whose frequency content is within its operation range. The semi-active tuned mass damper (SATMD) has been proposed to solve this problem. The parameters of an SATMD can be adjusted in real time based on the measured structural responses and an appropriate control law. In this study, a stiffness-controllable TMD, called a leverage-type stiffness-controllable mass damper (LSCMD), is proposed and fabricated to verify its feasibility. The LSCMD contains a simple leverage mechanism and its stiffness can be altered by adjusting the pivot position. To determine the pivot position of the LSCMD in real time, a discrete-time direct output-feedback active control law that considers delay time is implemented. Moreover, an identification test for the transfer function of the pivot driving and control systems is proposed. The identification results demonstrate the target displacement can be achieved by the pivot displacement in 0-2 Hz range and the control delay time is about 0.1 s. A shaking-table test has been conducted to verify the theory and feasibility of the LSCMD. The comparisons of experimental and theoretical results of the LSCMD system show good consistency. It is shown that dynamic behavior of the LSCMD can be simulated correctly by the theoretical model and that the stiffness can be properly adjusted by the pivot position. Comparisons of experimental results of the LSCMD and passive TMD show the LSCMD with less demand on the mass damper stroke than that for the passive TMD.

Improving the seismic behavior of diagonal braces by developing a new combined slit damper and shape memory alloys

  • Vafadar, Farzad;Broujerdian, Vahid;Ghamari, Ali
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.107-120
    • /
    • 2022
  • The bracing members capable of active control against seismic loads to reduce earthquake damage have been widely utilized in construction projects. Effectively reducing the structural damage caused by earthquake events, bracing systems equipped with retrofitting damper devices, which take advantage of the energy dissipation and impact absorption, have been widely used in practical construction sites. Shape Memory Alloys (SMAs) are a new generation of smart materials with the capability of recovering their predefined shape after experiencing a large strain. This is mainly due to the shape memory effects and the superelasticity of SMA. These properties make SMA an excellent alternative to be used in passive, semi-active, and active control systems in civil engineering applications. In this research, a new system in diagonal braces with slit damper combined with SMA is investigated. The diagonal element under the effect of tensile and compressive force turns to shear force in the slit damper and creates tension in the SMA. Therefore, by creating shear forces in the damper, it leads to yield and increases the energy absorption capacity of the system. The purpose of using SMA, in addition to increasing the stiffness and strength of the system, is to create reversibility for the system. According to the results, the highest capacity is related to the case where the ratio of the width of the middle section to the width of the end section (b1/b) is 1.0 and the ratio of the height of the middle part to the total height of the damper (h1/h) is 0.1. This is mainly because in this case, the damper section has the highest cross-section. In contrast, the lowest capacity is related to the case where b1/b=0.1 and the ratio h1/h=0.8.

실시간 하이브리드 실험법을 이용한 대형 MR감쇠기의 제진 성능평가 (Performance Evaluation of a Large-scale MR Damper for Controlling Seismic Response using a Real-time Hybrid Test Method)

  • 정희산;이성경;박은천;윤경조;민경원;이헌재;최강민;문석준;정형조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.655-660
    • /
    • 2007
  • This paper presents real-time hybrid test method of large-scale MR damper applied to a building structure under seismic excitation. The real-time hybrid test using an actuator for the control performance evaluation of a MR damper controlling the response of earthquake-excited building structure is experimentally implemented. In the test, the building structure is used as a numerical part, on which a large-scale MR damper adopted as an experimental part was installed to reduce its response. At first, the force that is acting between a MR damper and building structure is measured from the load cell attached on the actuator system and is fed-back to the computer to control the motion of the actuator. Then, the actuator is so driven that the error between the interface displacement computed from the numerical building structure with the excitations of earthquake and the fed-back interface force and that measured from the actuator. The control efficiency of the MR damper used in this paper is experimentally confirmed by implementing this process of experiment on real-time.

  • PDF

실시간 하이브리드 실험법을 이용한 대형 MR감쇠기의 제진 성능평가 (Performance Evaluation of a Large-scale MR Damper for Controlling Seismic Responses Using a Real-time Hybrid Test Method)

  • 박은천;이성경;윤경조;정희산;이헌재;최강민;문석준;정형조;민경원
    • 한국소음진동공학회논문집
    • /
    • 제18권1호
    • /
    • pp.131-138
    • /
    • 2008
  • This paper presents real-time hybrid test method of large-scale MR damper applied to a building structure under seismic excitation. The real-time hybrid test using an actuator for the control performance evaluation of a MR damper controlling the response of earthquake-excited building structure is experimentally implemented. In the test, the building structure is used as a numerical part, on which a large-scale MR damper adopted as an experimental part was installed to reduce its response. At first, the force that is acting between a MR damper and building structure is measured from the load cell attached on the actuator system and is fed-back to the computer to control the motion of the actuator. Then, the actuator is so driven that the error between the interface displacement computed from the numerical building structure with the excitations of earthquake and the fed-back interface force and that measured from the actuator. The control efficiency of the MR damper used in this paper is experimentally confirmed by implementing this process of experiment on real-time.

자기민감 고무를 이용한 구조물의 면진성능 연구 (A Study on Base Isolation Performance of Magneto-Sensitive Rubbers)

  • 황인호;임종혁;이종세
    • 한국지진공학회논문집
    • /
    • 제10권4호
    • /
    • pp.77-84
    • /
    • 2006
  • 최근 들어 지진발생 빈도의 증가와 더불어 초고층 빌딩, 장대교량 등과 같은 대형구조물의 경량화, 유연화로 인해 발생하는 구조물의 과도한 동적거동을 효과적으로 제어할 수 있는 제진시스템의 필요성이 증가하고 있다. 본 연구에서는 지진으로부터 구조물을 보다 효과적으로 보호하기 위해 자기장에 의해 역학적 성질을 변화시킬 수 있는 제어가 가능한 지능형재료인 자기민감 고무(Magneto-Sensitive Rubber)를 이용한 반 능동 기초격리 시스템을 제안하였다. 제안된 기초격리 시스템은 기존의 LRB(Lead-Rubber Bearing) 시스템과의 비교 분석을 통해 면진성능을 평가하였으며 이를 위해 몇 가지 역사적 지진들을 이용수치해석을 수행하였다. 제안된 자기민감 고무를 이용한 반 능동 기초격린 시스템은 기존의 수동 시스템보다 기초전단력이나 상부구조물에 가속도 전달을 차단함과 동시에 기초변위를 현저하게 감소시킬 수 있음을 보였다. 그러므로 자가민감 고무를 이용한 반 능동 기초격리 시스템은 지진으로부터 구조물을 효과적으로 보호할 수 있을 것으로 사료된다.

Real-time hybrid simulation of smart base-isolated raised floor systems for high-tech industry

  • Chen, Pei-Ching;Hsu, Shiau-Ching;Zhong, You-Jin;Wang, Shiang-Jung
    • Smart Structures and Systems
    • /
    • 제23권1호
    • /
    • pp.91-106
    • /
    • 2019
  • Adopting sloped rolling-type isolation devices underneath a raised floor system has been proved as one of the most effective approaches to mitigate seismic responses of the protected equipment installed above. However, pounding against surrounding walls or other obstructions may occur if such a base-isolated raised floor system is subjected to long-period excitation, leading to adverse effects or even more severe damage. In this study, real-time hybrid simulation (RTHS) is adopted to assess the control performance of a smart base-isolated raised floor system as it is an efficient and cost-effective experimental method. It is composed of multiple sloped rolling-type isolation devices, a rigid steel platen, four magnetorheological (MR) dampers, and protected high-tech equipment. One of the MR dampers is physically tested in the laboratory while the remainders are numerically simulated. In order to consider the effect of input excitation characteristics on the isolation performance, the smart base-isolated raised floor system is assumed to be located at the roof of a building and the ground level. Four control algorithms are designed for the MR dampers including passive-on, switching, modified switching, and fuzzy logic control. Six artificial spectrum-compatible input excitations and three slope angles of the isolation devices are considered in the RTHS. Experimental results demonstrate that the incorporation of semi-active control into a base-isolated raised floor system is effective and feasible in practice for high-tech industry.

복합감쇠기를 이용한 장대교량의 내진성능향상 (Improvement of Seismic Performance of Long-span Bridges using Complex Dampers)

  • 하동호;박관순;박원석;편무욱
    • 한국지진공학회논문집
    • /
    • 제11권3호
    • /
    • pp.53-62
    • /
    • 2007
  • 이 연구에서는 작용하는 하중특성에 따라 적절한 감쇠력을 발휘할 수 있는 복합감쇠기(complex damper)를 제안하고 그 유용성을 장대교량의 지진응답해석을 통하여 검토하였다. 제안한 복합감쇠기는 두개 이상의 탄소성감쇠기(elasto-plastic damper)와 오일 감쇠기(oil damper)의 조합에 의하여 구성되며, 탄소성감쇠기의 변위의존적인 특성과 오일감쇠기의 속도의존적인 특성을 적절히 결합함으로서 효율적인 감쇠시스템의 구성이 가능하게 하였다. 중소형의 지진이나 작은 진폭의 진동에서는 오일감쇠기가 주로 진동을 흡수하며, 발생 빈도가 낮으나 규모가 큰 지진 등에 대해서는 탄소성 감쇠기가 진동에너지를 흡수한다. 이와 같이 복합감쇠기는 두 가지 종류의 감쇠기 역할을 잘 구분시켜 경제적이고 제진효율성이 뛰어난 설계를 가능하게 한다. 복합감쇠장치의 수학적 모델을 정립하였고, 수치모사를 통하여 응답특성과 효율성을 평가하였다. 수치모사 결과, 복합감쇠기는 단일의 수동형감쇠기를 이용하는 경우보다 뛰어난 감쇠효과를 더욱 경제적으로 구현할 수 있으며 내진성능을 크게 향상시킬 수 있는 것으로 나타났다.

MR 감쇠기와 FPS를 이용한 하이브리드 면진장치의 퍼지제어 (Fuzzy control of hybrid base-isolator with magnetorheological damper and friction pendulum system)

  • 김현수
    • 한국지진공학회논문집
    • /
    • 제9권1호통권41호
    • /
    • pp.61-70
    • /
    • 2005
  • 본 연구에서는 하이브리드 면진장치가 설치된 단자유도 구조물에 대하여 진동대 실험을 수행하였다. 본 연구에서 사용된 하이브리드 면진장치는 네 개의 FPS와 한 개의 MR 감쇠기로 구성하였다. 다양한 크기 및 특성을 가진 지진하중을 하이브리드 면진장치가 설치된 구조물에 가하여 진동제어 성능을 평가하였다. 본 연구에는 준능동 MR 감쇠기의 저항력을 효과적으로 조절하기 위하여 퍼지제어기를 사용하였고 구조물에 부착된 계측기를 통하여 변위 및 가속도를 피드백으로 이용한다. 수동 및 준능동 제어기법을 사용하여 얻은 구조물의 응답을 서로 비교하였고 그 결과 FPS와 MR 감쇠기의 조합으로 다양한 특성의 하중을 받는 구조물의 진동제어를 효과적으로 수행할 수 있음을 알 수 있다.

수동형 댐퍼를 장착한 구조물의 동적응답기반 신뢰성 해석 - 제1편: 부재별 파괴확률 산정 (Dynamic Response based Reliability Analysis of Structure with Passive Damper - Part 1: Assessment of Member Failure Probability)

  • 김승민;옥승용
    • 한국안전학회지
    • /
    • 제31권4호
    • /
    • pp.90-96
    • /
    • 2016
  • This study proposes a dynamic reliability analysis of control system as a method of quantitative evaluation of its performance in probabilistic terms. In this dynamic reliability analysis, the failure event is defined as an event that the dynamic response of the structural system exceeds a displacement limit, whereas the conventional reliability analysis method has limitations that do not properly assess the actual time history response of the structure subjected to dynamic loads, such as earthquakes and high winds, by taking the static response into account in the failure event. In this first paper, we discuss the control effect of the viscous damper on the seismic performance of the member-level failure where the failure event of the structural member consists of the union set of time-sequential member failures during the earthquake excitations and the failure probability of the earthquake-excited structural member is computed using system reliability approach to consider the statistical dependence of member failures between the subsequent time points. Numerical results demonstrate that the proposed approach can present a reliable assessment of the control performance of the viscous damper system in comparison with MCS method. The most important advantage of the proposed approach can provide us more accurate estimate of failure probability of the structural control system by using the actual time-history responses obtained by dynamic response analysis.

Two-level control system of toggle braces having pipe damper and rotational friction damper

  • Ata Abdollahpour;Seyed Mehdi Zahrai
    • Structural Engineering and Mechanics
    • /
    • 제86권6호
    • /
    • pp.739-750
    • /
    • 2023
  • This study examines the two-level behavior of the toggle brace damper within a steel frame having a yielding pipe damper and rotational friction damper. The proposed system has two kinds of fuse for energy dissipation in two stages. In this mechanism, rotational friction damper rather than hinged connection is used in toggle brace system, connected to a pipe damper with a limited gap. In order to create a gap, bolted connection with the slotted hole is used, such that first a specific movement of the rotational friction damper solely is engaged but with an increase in movement, the yielding damper is also involved. The performance of the system is such that at the beginning of loading the rotational friction damper, as the first fuse, absorbs energy and with increasing the input load and further movement of the frame, yielding damper as the second fuse, along with rotational friction damper would dissipate the input energy. The models created by ABAQUS are subjected to cyclic and seismic loading. Considering the results obtained, the flexibility of the hybrid two-level system is more comparable to the conventional toggle brace damper. Moreover, this system sustains longer lateral displacements. The energy dissipation of these two systems is modeled in multi-story frames in SAP2000 software and their performance is analyzed using time-history analysis. According to the results, permanent relocations of the roof in the two-level system, in comparison with toggle brace damper system in 2, 5, and 8-story building frames, in average, decrease by 15, 55, and 37% respectively. This amount in a 5-story building frame under the earthquakes with one-third scale decreases by 64%.