• Title/Summary/Keyword: passive sampler

Search Result 136, Processing Time 0.02 seconds

Characterization of contribution of vehicle emissions to ambient NO2 using stable isotopes (안정동위원소를 이용한 이동오염원에 의한 대기 중 NO2의 거동특성 연구)

  • Park, Kwang-Su;Kim, Hyuk;Yu, Suk-Min;Noh, Seam;Park, Yu-Mi;Seok, Kwang-Seol;Kim, Min-Seob;Yoon, Suk Hee;Kim, Young-Hee
    • Analytical Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.17-23
    • /
    • 2019
  • Sources of NOx are both anthropogenic (e.g. fossil fuel combustion, vehicles, and other industrial processes) and natural (e.g. lightning, biogenic soil processes, and wildfires). The nitrogen stable isotope ratio of NOx has been proposed as an indicator for NOx source partitioning, which would help identify the contributions of various NOx sources. In this study, the ${\delta}^{15}N-NO_2$ values of vehicle emissions were measured in an urban region, to understand the sources and processes that influence the isotopic composition of NOx emissions. The Ogawa passive air sampler was used to determine the isotopic composition of $NO_2$(g). In urban tunnels, the observed $NO_2$ concentration and ${\delta}^{15}N-NO_2$ values averaged $3809{\pm}2656ppbv$ and $7.7{\pm}1.8$‰, respectively. The observed ${\delta}^{15}N-NO_2$ values are associated with slight regional variations in the vehicular $NO_2$ source. Both $NO_2$ concentration and ${\delta}^{15}N-NO_2$ values were significantly higher near the expressway ($965{\pm}125ppbv$ and $5.9{\pm}1.4$‰) than at 1.1 km from the expressway ($372{\pm}96ppbv$ and $-11.5{\pm}2.9$‰), indicating a high proportion of vehicle emissions. Ambient ${\delta}^{15}N-NO_2$ values were used in a binary mixing model to estimate the percentage of the ${\delta}^{15}N-NO_2$ value contributed by vehicular NOx emissions. The calculated percentage of the ${\delta}^{15}N-NO_2$ contribution by vehicles was significantly higher close to the highway, as observed for the $NO_2$ concentration and ${\delta}^{15}N-NO_2$.

The Comparison Study on the Concentration of $NO_{2}$, HCHO by Passive Sampler and Direct Reading Instrument (확산형 시료 채취기와 직독식 기기에 의한 이산화질소와 포름알데히드 농도의 비교)

  • Kim, Gyeong-Jin;Park, Ji-Yeon;Kim, Hyeong-A;An, Gyu-Dong
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.11a
    • /
    • pp.106-109
    • /
    • 2005
  • 확산형 시료 채취기와 직독식 기기(공정시험법, Nitrogen Oxides Analyzer Model; EC 9841, Ecotech, Australia)에 의한 $NO_2$, 농도를 비교하고, 능동시료채취기(공정시험법)와 확산형포집기에 의한 HCHO(포름알데히드) 농도를 비교하기 위해 서울 ${\cdot}$ 경기 또는 대전, 충남 ${\cdot}$ 북지역에 소재한 11개 시설(종합병원 4곳, 노인 병원 1곳, 보건소 1곳, 복지관 3곳, 보육시설 2곳)을 대상으로 수행하였다. 1. 포름알데히드의능동 포집법(공정시험법)에 의한 시료(n=87)의 평균농도는 $11.44{\pm}11.07ppb$이고, 확산형 시료 채취기 의한 시료(n=40)의 평균농도는 $11.91{\pm}7.37ppb$으로 비슷한 값이 나왔고, 통계적으로 유의하지 않았다(p=0.806). 2. 포름알데히드 능동 포집법에 의한 농도와 확산형 시료 채취기에 의한 농도와의 상관계수 r=0.404(p=0.037)로 나타나 이 두 가지의 방법은 특정시간 포름알데히드 측정에 사용하여도 어느 정도 비교하기에는 적합할 것으로 생각된다. 3. 이산화질소의 노출정도는 직독식 기기(공정시험방법)와 확산형 시료 채취기로 각각 1시간 (오전, 오후 각각 2회), 8시간 측정하였다. 공정시험방법(n=61)에 의한 1시간-시료 평균농도는$44.48{\pm}37.96ppb$이고, 확산형 시료 채취기(n=61)에 의한 1시간-시료 평균농도는 $3.58{\pm}2.07ppb$으로 통계적으로 유의하였다(p=0.000). 직독식 기기(n=61)에 의한 8시간-시료 평균농도는 $34.85{\pm}22.83ppb$이고, 확산형 시료 채취기(n=61)에 의한 8시간-시료 평균농도 $8.32{\pm}4.44ppb$으로 통계적으로도 유의하였다(p=0.000). 4. 이산화질소를 직독식 기기(공정시험방법)와 확산형 시료 채취기로 측정한 1시간-시료 농도의 상관계수 r=0.253(p=0.268)이고 8시간-시료 일 때 상관계수 r=0.367(p=0.102)로 나타나 확산형 시료 채취기를 직독식 기기(공정시험방법) 대체 사용방법으로 이용하기에는 적합하지 않다고 생각된다.

  • PDF

Patterns of Offensive Odor Compounds According to Blocks in Shiwha Industrial Complex (시화산업단지의 블록 별 악취유발물질 특성)

  • Byeon, Sang-Hoon;Lee, Jung-Geun;Kim, Jung-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.12
    • /
    • pp.1161-1168
    • /
    • 2009
  • This research was conducted on characteristic of offensive odors in Shihwa industrial complex. Result of blocks distribution of TVOC indicates that mechanic block, site D, was the highest concentration (74 ppb). Chemistry block, site A, was the second highest concentration (50 ppb). Also, mixed blocks, metal blocks and park etc. were measured almost similar concentration about 30 ppb, but mixed block, site F, was the place where concentrations were the smallest. Average of TVOC was shown about 35 ppb concentration. Aldehydes including acetaldehyde, butyraldehyde and hydrogen sulfide concentrations were prevalent among offensive odors in Shihwa industrial complex. Comparing the offensive odor intensity mostly about acetaldehyde, butyraldehyde and hydrogen sulfide which contain high offensive odor intensity showed results that sites A, B (chemistry block) and site D, I (mechanic block) site H (metal block) have showed the intensity over 1. In the case of acetaldehyde, relatively the high odor intensities over '2' were able to obtain in many cases. The correlation coefficient (r) for hydrogen sulfide was 0.91, so that high positive correlation exists between offensive odor intensity and the hydrogen sulfide element. Butyraldehyde also showed high positive correlation coefficient, as 0.82. Correlation coefficient of acetaldehyde that had the highest value as offensive odor substance was 0.62, had somewhat correlation with offensive odor intensity.

A Study on Exposure Indices for Diesel Engine Exhaust in Forklift Operating Areas (지게차 사용 사업장에서 디젤엔진배출물질 노출지표에 관한 연구)

  • Kim, Sangil;Park, Ji Young;Lee, Kyeongmin;Kim, Seung Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.1
    • /
    • pp.38-47
    • /
    • 2016
  • Objectives: The objective of this study was to determine the exposure levels of forklift operators to diesel engine exhaust(DEE) using black carbon(BC), elemental carbon(EC), and nitrogen dioxide($NO_2$) as indicators. Methods: A total of eight forklift operators in six collection companies were assessed over a period of two months from July to September 2015. BC was measured using a real-time monitor and respirable EC samples were analyzed using the NIOSH method 5040. $NO_2$ samples were collected using a passive badge-type sampler. Results: The geometric mean of BC, EC and $NO_2$ were $3.1-19.1{\mu}g/m^3$, $2.1-23.8{\mu}g/m^3$, and 12.5-166.6 ppb at all companies. When forklifts were operating both outside and inside, BC concentrations increased 2.0-5.6 times. The highest increase was observed when forklifts were operating indoors. The increase in BC concentrations varied by company(company A: 2.0 times, B: 3.2 times, C: 5.6 times, D: 2.1 times, E: 5.1 times, F: 2.6 times). The geometric mean of BC, EC, and $NO_2$ for the forklift operators was $9.6{\mu}g/m^3$, $7.9{\mu}g/m^3$, and 48.9 ppb, respectively. The geometric mean of BC, EC, and $NO_2$ for manufacturing workers was $9.3{\mu}g/m^3$, $0.9{\mu}g/m^3$, and 85.2 ppb, respectively. The mean BC and EC exposure levels for the forklift operators were slightly higher than those for manufacturing workers, but $NO_2$ levels for manufacturing workers were higher than those for the forklift operators(p>0.05). Multiple regression analysis revealed that diesel exhaust emissions standard, forklift weight and forklift manufacturer were the most influential factors in determining worker exposure. Conclusions: In the DEE work environment, workers who perform tasks within the workplace as well as inside forklifts as operators are likely to be exposed to a lack of ventilation. Further study of forklift operators' exposure to DEE indicators should be conducted to include a wider range of occupational and environmental situations, such as collection procedures, seasonal situations, types of fuel used, and number of forklifts.

Personal Exposure Level of Nitrogen Dioxide in an Industrial Area (일부 공단지역 내 이산화질소에 의한 개인노출 농도에 관한 연구)

  • Jeon, Yong-Teak;Yang, Won-Ho;Cho, Tea-Jin;Son, Bu-Soon
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.1
    • /
    • pp.11-20
    • /
    • 2009
  • This study was conducted in industrial area. The level of nitrogen dioxide was measured indoor, outdoor, work and personal in an study area within 5 km from source of pollution and control area 15 km farther from August, 2006 to September. The followings are the summary of this research. The concentration of the indoor and the outdoor $NO_2$ levels in the industrial area are 18.41$\pm$6.35 ppb, 18.51$\pm$3.26 ppb each, and the indoor/outdoor concentration rate is 0.99. The concentration of $NO_2$ in the workplace is 18.59$\pm$10.16 ppb, and the individual exposure rate is 18.80$\pm$5.71 ppb. The concentration of the indoor and the outdoor $NO_2$ levels control area are 12.57$\pm$3.82 ppb, 9.68$\pm$2.16 ppb each, and the indoor/outdoor concentration rate is 1.33. The personal exposure rate is 14.49$\pm$10.06 ppb. The residents of the each area and those of the comparative area spend 80.9% and 76.9% each their time in the indoor. It shows they spend most of their time in indoor. The predictions of the individual exposure rates in the industrial area and the comparative area are 15.10$\pm$6.14 ppb and 10.52$\pm$3.82 ppb each, The concentration levels measured by passive sampler are 18.80$\pm$5.71 ppb and 14.49$\pm$10.34 ppb each. The result of the research is the analysis of the personal exposure rate in indoor, outdoor and workplace of industrial area. This research may bo used as a basic data to manage and to establish the plan for $NO_2$ gas of the industrial area.

Application of the Artificial Mussel for Monitoring Heavy Metal Levels in Seawater of the Coastal Environments, Korea (Artificial mussel을 이용한 우리나라 연안환경의 중금속 오염도 연구)

  • Ra, Kongtae;Kim, Joung-Keun;Kim, Kyung-Tae;Lee, Seung-Yong;Kim, Eun-Soo;Lee, Jung-Moo;Wu, Rudolf S.S.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.131-145
    • /
    • 2014
  • The new passive sampler called "artificial mussel (AM)" offers a potential device to study the spatiotemporal changes of metal concentrations in different marine environment worldwide. The purpose of this study is to characterize metal (Cd, Cr, Cu, Zn, Pb) accumulation on the AM and transplanted mussel (Mytilus edulis) at 5 sites of Lake Shihwa. Both the AMs and mussels showed increasing concentrations of all five metals during the 12 weeks exposure period. Higher concentrations of Zn were showed in both the AMs and Mytilus edulis relative to other metals. The AMs accumulated higher concentrations of Cd, Cr and Zn, but they presented lower levels of Cu and Pb than Mytilus edulis. The correlations for Cd, Cu and Pb were statistically significant between the AMs and Mytilus edulis, indicating that the accumulation patterns for those metals were similar. However, no similarities for Cr and Zn were observed between two monitoring devices across all of the sites in Shihwa Lake. According to relationship for metal concentrations between dissolve phase in seawater and both the AMs and Mytilus edulis, the AMs for Cd, Cu and Zn represent more metal contamination than Mytilus edulis. Our results indicated that the AMs give a better resolution to reveal the spatial differences in dissolved metal concentration. This study suggests that the AMs can provide a time-integrated estimate of metal pollution in marine environments as well as freshwater environments of Korea.