• Title/Summary/Keyword: passive safety systems

Search Result 108, Processing Time 0.021 seconds

Development of Collision Safety Control Logic using ADAS information and Machine Learning (머신러닝/ADAS 정보 활용 충돌안전 제어로직 개발)

  • Park, Hyungwook;Song, Soo Sung;Shin, Jang Ho;Han, Kwang Chul;Choi, Se Kyung;Ha, Heonseok;Yoon, Sungroh
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.3
    • /
    • pp.60-64
    • /
    • 2022
  • In the automotive industry, the development of automobiles to meet safety requirements is becoming increasingly complex. This is because quality evaluation agencies in each country are continually strengthening new safety standards for vehicles. Among these various requirements, collision safety must be satisfied by controlling airbags, seat belts, etc., and can be defined as post-crash safety. Apart from this safety system, the Advanced Driver Assistance Systems (ADAS) use advanced detection sensors, GPS, communication, and video equipment to detect the hazard and notify driver before the collision. However, research to improve passenger safety in case of an accident by using the sensor of active safety represented by ADAS in the existing passive safety is limited to the level that utilizes the sudden braking level of the FCA (Forward Collision-avoidance Assist) system. Therefore, this study aims to develop logic that can improve passenger protection in case of an accident by using ADAS information and driving information secured before a collision. The proposed logic was constructed based on LSTM deep learning techniques and trained using crash test data.

Islanding Detection Method for Grid-connected PV System using Automatic Phase-shift (자동 위상 이동을 이용한 계통 연계형 태양광 발전 시스템의 고립운전 검출기법)

  • Yun, Jung-Hyeok;Choi, Jong-Woo;So, Jung-Hun;Yu, Gwon-Jong;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.107-114
    • /
    • 2007
  • Islanding of PV systems occurs when the utility grid is removed but the PV systems continue to operate and provide power to local loads. Islanding is one of the serious problems in an electric power system connected with dispersed power sources. This can present safety hazards and the possibility of damage to other electric equipments. In the passive method, the voltage and frequency of PCC are measured and it determines islanding phenomena if their values excess the allowed limits. If the real and reactive power of RLC load and those of the PV system are closely matched, islanding phenomena can't be detected by the passive methods. Several active methods were proposed to detect islanding operation in the region where the passive method can not detect it. The most effective method is SFS method which was suggested by Sandia National Laboratory. In this paper, a new islanding detection method using automatic phase-shift is proposed and its validity is verified through the simulation and experimental results.

CFD analysis of the effect of different PAR locations against hydrogen recombination rate

  • Lee, Khor Chong;Ryu, Myungrok;Park, Kweonha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.112-119
    • /
    • 2016
  • Many studies have been conducted on the performance of a passive autocatalytic recombiner (PAR), but not many have focused on the locations where the PAR is installed. During a severe accident in a nuclear reactor containment, a large amount of hydrogen gas can be produced and released into the containment, leading to hydrogen deflagration or a detonation. A PAR is a hydrogen mitigation method that is widely implemented in current and advanced light water reactors. Therefore, for this study, a PAR was installed at different locations in order to investigate the difference in hydrogen reduction rate. The results indicate that the hydrogen reduction rate of a PAR is proportional to the distance between the hydrogen induction location and the bottom wall.

An Experiment on the Flow Control Characteristics of a Passive Fluidic Device (피동적 유체기구의 유동 조절 특성에 관한 실험)

  • Seo, Jeong-Sik;Song, Chul-Hwa;Cho, Seok;Chung, Moon-Ki;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.338-345
    • /
    • 2000
  • A model testing has been performed to investigate the flow characteristics of a vortex chamber, which plays a role of a flow switch and passively controls the discharge flow rate. This method of passive flow control is a matter of concern in the design of advanced nuclear reactor systems as an alternative to the active flow control to provide emergency water to the reactor core in case of postulated accidents like LOCA (Loss-Of-Coolant Accident). By changing the inflow direction in the vortex chamber and varying the flow resistance inside the chamber, the vortex chamber can control passively the injection flowrate. Fundamental characteristics such as discharge flow rate and pressure drop of the vortex chamber are measured, and its parametric effects on the performance of the vortex chamber are also systematically investigated.

Basic Design of ECU Hardware for the Functional Safety of In-Vehicle Network Communication (차량 내 네트워크 통신의 기능안전성을 위한 하드웨어 기본 설계)

  • Koag, Hyun Chul;Ahn, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1373-1378
    • /
    • 2017
  • This paper presents a basic ECU(Electronic Control Unit) hardware development procedure for the functional safety of in-vehicle network systems. We consider complete hardware redundancy as a safety mechanism for in-vehicle communication network under the assumption of the wired network failure such as disconnection of a CAN bus. An ESC (Electronic Stability Control) system is selected as an item and the required ASIL(Automotive Safety Integrity Level) for this item is assigned by performing the HARA(Hazard Analysis and Risk Assessment). The basic hardware architecture of the ESC system is designed with a microcontroller, passive components, and communication transceivers. The required ASIL for ESC system is shown to be satisfied with the designed safety mechanism by calculation of hardware architecture metrics such as the SPFM(Single Point Fault Metric) and the LFM(Latent Fault Metric).

ASSESSMENT OF A NEW DESIGN FOR A REACTOR CAVITY COOLING SYSTEM IN A VERY HIGH TEMPERATURE GAS-COOLED REACTOR

  • PARK GOON-CHERL;CHO YUN-JE;CHO HYOUNGKYU
    • Nuclear Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.45-60
    • /
    • 2006
  • Presently, the VHTGR (Very High Temperature Gas-cooled Reactor) is considered the most attractive candidate for a GEN-IV reactor to produce hydrogen, which will be a key resource for future energy production. A new concept for a reactor cavity cooling system (RCCS), a critical safety feature in the VHTGR, is proposed in the present study. The proposed RCCS consists of passive water pool and active air cooling systems. These are employed to overcome the poor cooling capability of the air-cooled RCCS and the complex cavity structures of the water-cooled RCCS. In order to estimate the licensibility of the proposed design, its performance and integrity were tested experimentally with a reduced-scale mock-up facility, as well as with a separate-effect test facility (SET) for the 1/4 water pool of the RCCS-SNU to examine the heat transfer and pressure drop and code capability. This paper presents the test results for SET and validation of MARS-GCR, a system code for the safety analysis of a HTGR. In addition, CFX5.7, a computational fluid dynamics code, was also used for the code-to-code benchmark of MARS-GCR. From the present experimental and numerical studies, the efficacy of MARS-GCR in application to determining the optimal design of complicated systems such as a RCCS and evaluation of their feasibility has been validated.

Application of two different similarity laws for the RVACS design

  • Min Ho Lee;Ji Hwan Hwang;Ki Hyun Choi;Dong Wook Jerng;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4759-4775
    • /
    • 2022
  • The RVACS is a versatile and robust safety system driven by two natural circulations: in-vessel coolant and ex-vessel air. To observe interaction between the two natural circulations, SINCRO-IT facility was designed with two different similarity laws simultaneously. Bo' based similarity law was employed for the in-vessel, while Ishii's similarity law for the ex-vessel excluding the radiation. Compared to the prototype, the sodium and air system, SINCRO-IT was designed with Wood's metal and air, having 1:4 of the length reduction, and 1.68:1 of the time scale ratio. For the steady state, RV temperature limit was violated at 0.8% of the decay heat, while the sodium boiling was predicted at 1.3%. It showed good accordance with the system code, TRACE. For an arbitrary re-criticality scenario with RVACS solitary operation, sodium boiling was predicted at 25,100 s after power increase from 1.0 to 2.0%, while the system code showed 30,300. Maximum temperature discrepancy between the experiments and system code was 4.2%. The design and methodology were validated by the system code TRACE in terms of the convection, and simultaneously, the system code was validated against the simulating experiments SINCRO-IT. The validated RVACS model could be imported to further accident analysis.

Safety Characteristics of Metal-Fueled Sodium-Cooled Fast Reactor (금속연료를 사용하는 소듐냉각 고속로의 안전특성)

  • Jeong, Hae-Yong
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.19-30
    • /
    • 2014
  • The leading countries in nuclear technology development are concentrating their efforts on the development of Sodium-cooled Fast Reactor, which is one of the Generation-IV nuclear reactor systems characterized by a sustainability, an enhanced safety, proliferation resistance, and improved economics. Especially, the Republic of Korea is developing a Sodium-cooled Fast Reactor equipped with metallic-fuel. This type of fast reactor has superior inherent safety and passive safety characteristics. Further, sodium-cooled fast reactors enable the reuse of spent fuel and the closing of fuel cycle, thus, it increases the sustainability of nuclear energy. Many countries are planning the deployment of sodium-cooled fast reactors before 2050 in their energy mix.

Design and Verification of the Hardware Architecture for the Active Seat Belt Control System Compliant to ISO 26262 (ISO 26262에 부합한 능동형 안전벨트 제어 시스템의 하드웨어 아키텍처 설계 및 검증)

  • Lee, Jun Hyok;Koag, Hyun Chul;Lee, Kyung-Jung;Ahn, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2030-2036
    • /
    • 2016
  • This paper presents a hardware development procedure of the ASB(Active Seat Belt) control system to comply with ISO 26262. The ASIL(Automotive Safety Integrity Level) of an ASB system is determined through the HARA(Hazard Analysis and Risk Assessment) and the safety mechanism is applied to meet the reqired ASIL. The hardware architecture of the controller consists of a microcontroller, H-bridge circuits, passive components, and current sensors which are used for the input comparison. The required ASIL for the control systems is shown to be satisfied with the safety mechanism by calculation of the SPFM(Single Point Fault Metric) and the LFM(Latent Fault Metric) for the design circuits.

Design and operation of the transparent integral effect test facility, URI-LO for nuclear innovation platform

  • Kim, Kyung Mo;Bang, In Cheol
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.776-792
    • /
    • 2021
  • Conventional integral effect test facilities were constructed to enable the precise observation of thermal-hydraulic phenomena and reactor behaviors under postulated accident conditions to prove reactor safety. Although these facilities improved the understanding of thermal-hydraulic phenomena and reactor safety, applications of new technologies and their performance tests have been limited owing to the cost and large scale of the facilities. Various nuclear technologies converging 4th industrial revolution technologies such as artificial intelligence, drone, and 3D printing, are being developed to improve plant management strategies. Additionally, new conceptual passive safety systems are being developed to enhance reactor safety. A new integral effect test facility having a noticeable scaling ratio, i.e., the (UNIST reactor innovation loop (URI-LO), is designed and constructed to improve the technical quality of these technologies by performance and feasibility tests. In particular, the URI-LO, which is constructed using a transparent material, enables better visualization and provides physical insights on multidimensional phenomena inside the reactor system. The facility design based on three-level approach is qualitatively validated with preliminary analyses, and its functionality as a test facility is confirmed through a series of experiments. The design feature, design validation, functionality test, and future utilization of the URI-LO are introduced.