• Title/Summary/Keyword: passive pile groups

Search Result 4, Processing Time 0.017 seconds

Analysis Method of Passive Piles considering group effect (군말뚝효과를 고려한 수동말뚝의 해석기법)

  • 정상섬;원진오;김병철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.151-158
    • /
    • 2000
  • The lateral deformation of one row pile groups was investigated based on analytical study and a numerical analysis. The emphasis was on quantifing the load transfer of pile groups subjected to lateral soil movement. An analytical method to consider pile-soil interaction in weathered soil was developed using load-transfer curve methods. Through the comparative study, it is found that the prediction by present approach is in good agreement with the general trend observed by in-situ measurements.

  • PDF

Analysis of Passive Pile Groups Subjected to Lateral Soil Movements-A Study on the Model Test- (측방변형을 받는 수동군말뚝의 거동분석-모형토조실험-)

  • 장서용;원진오;정상섬
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.239-249
    • /
    • 1999
  • In this study, experimental work has been carried out to investigate the effect of lateral soil movement on passive piles. This paper consists mainly of two parts: the first, performance of a series of laboratory experiments on a single pile and one-row pile groups, and the second, comparison between the measured and the predicted results. In the laboratory experiments, a quadrilateral soil movement profile was imposed on model piles embedded in both sandy soils and weathered soils. The maximum bending moment and pile deflection induced in passive piles were found to be highly dependent on pile stiffness, pile spacing, relative densities and pile head fixity condition. It was shown that the group effect might either increase or decrease the maximum bending moment and pile deflection, depending on the aforementioned influence factors. Based on the results obtained, a spacing-to-diameter ratio of 7.0 seems to be large enough to eliminate the group effect, and a pile in such a case behaves essentially the same as a single pile.

  • PDF

Response of passively loaded pile groups - an experimental study

  • Al-abboodi, Ihsan;Sabbagh, Tahsin Toma;Al-salih, Osamah
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.333-343
    • /
    • 2020
  • Preventing or reducing the damage impact of lateral soil movements on piled foundations is highly dependent on understanding the behavior of passive piles. For this reason, a detailed experimental study is carried out, aimed to examine the influence of soil density, the depth of moving layer and pile spacing on the behavior of a 2×2 free-standing pile group subjected to a uniform profile of lateral soil movement. Results from 8 model tests comprise bending moment, shear force, soil reaction and deformations measured along the pile shaft using strain gauges and others probing tools were performed. It is found that soil density and the depth of moving layer have an opposite impact regarding the ultimate response of piles. A pile group embedded in dense sand requires less soil displacement to reach the ultimate soil reaction compared to those embedded in medium and loose sands. On the other hand, the larger the moving depth, the larger amount of lateral soil movement needs to develop the pile group its ultimate deformations. Furthermore, the group factor and the effect of pile spacing were highly related to the soil-structure interaction resulted from the transferring process of forces between pile rows with the existing of the rigid pile cap.

Behaviors of Pile Croup Installed Near Inclined Ground (경사지반에 인접하여 설치된 무리말뚝의 거동연구)

  • Chae, Kwang-Seok;Ugai, Keizo;Yoon, Gil-Lim
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.53-64
    • /
    • 2003
  • Many transmission towers, high-rise buildings and bridges are constructed near steep slopes and are supported by large-diameter piles. These structures may be subjected to large lateral loads, such as violent winds and earthquakes. Widely used types of foundations for these structures are pier foundations, which have large-diameters with high stiffness. The behavior of a pier foundation subjected to lateral loads is similar to that of a short rigid pile because both elements seem to fail by rotation developing passive resistance on opposite faces above and below the rotation point, unlike the behavior of a long flexible pile. This paper describes the results of several numerical studies performed with a three-dimensional finite element method (FEM) of model tests of a laterally loaded short pile located near slopes, respectively. In this paper, the results of model tests of single piles and pile groups subjected to lateral loading, in homogeneous sand with 30$^{\circ}$ slopes and horizontal ground were analyzed by the 3-D FE analyses. The pile was assumed to be linearly elastic. The sand was assumed to have non-associative characteristics, following the MC-DP model. The failure criterion is governed by the Mohr-Coulomb equation and the plastic potential is given by the Drucker-Prager equation. The main purpose of this paper is the validation of the 3-D elasto-plastic FEM by comparisons with the experimental data.