• 제목/요약/키워드: passive facade design

검색결과 8건 처리시간 0.02초

Case Studies on Space Zoning and Passive Façade Strategies for Green Laboratories

  • Kim, Jinho
    • Architectural research
    • /
    • 제22권2호
    • /
    • pp.41-52
    • /
    • 2020
  • Laboratory buildings with specialized equipment and ventilation systems pose challenges in terms of efficient energy use and initial construction costs. Additionally, lab spaces should have flexible and efficient layouts and provide a comfortable indoor research environment. Therefore, this study aims to identify the correlation between the facade of a building and its interior layout from case studies of energy-efficient research labs and to propose passive energy design strategies for the establishment of an optimal research environment. The case studies in this paper were selected from the American Institute of Architects Committee on the Environment Top Ten Projects and Leadership in Energy and Environmental Design (LEED) certified research lab projects. In this paper, the passive design strategies of space zoning, façade design devices to control heating and cooling loads were analyzed. Additionally, the relationships between these strategies and the interior lab layouts, lab support spaces, offices, and circulation areas were examined. The following four conclusions were drawn from the analysis of various cases: 1) space zoning for grouping areas with similar energy requirements is performed to concentrate similar heating and cooling demands to simplify the HVAC loads. 2) Public areas such as corridor, atrium, or courtyard can serve as buffer zones that employ passive solar design to minimize the mechanical energy load. 3) A balanced window-to-wall ratio (WWR), exterior shading devices, and natural ventilation systems are applied according to the space programming energy requirements to minimize the dependence on mechanical service. 4) Lastly, typical laboratory space zoning categories can be revised, reversed, and even reconfigured to minimize the energy load and adjust to the site context. This study can provide deep insights into various design strategies employed for construction of green laboratories along with intuitive arrangement of various building components such as laboratory spaces, lab support spaces, office spaces, and common public areas. The key findings of this study can contribute towards creating improved designs of laboratory facilities with reduced carbon footprint and greenhouse emissions.

차양형 BIPV가 적용된 사무소 건물의 외피 최적 설계에 관한 연구 (A Study on the Optimum Design of a Facade with Shading-type BIPV in Office Building)

  • 박세현;강준구;방아영;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제35권2호
    • /
    • pp.93-101
    • /
    • 2015
  • Zero energy building is a self sufficient building that minimizes energy consumption through passive elements such as insulation, high performance window system and installing of high efficiency HVAC system and uses renewable energy sources. The Korea Government has been strengthening the building energy efficiency standard and code for zero energy building. The building energy performance is determined by the performance of building envelope. Therefore it is important to optimize facade design such as insulation, window properties and shading, that affect the heating and cooling loads. In particular, shading devices are necessary to reduce the cooling load in summer season. Meanwhile, BIPV shading system functions as a renewable energy technology applied in solar control facade system to reduce cooling load and produce electricity simultaneously. Therefore, when installing the BIPV shading system, the length of shadings and angle that affect the electricity production must be considered. This study focused on the facade design applied with BIPV shading system for maximizing energy saving of the selected standard building. The impact of changing insulation on roof and walls, window properties and length of BIPV shading device on energy performance of the building were investigated. In conclusion, energy consumption and electricity production were analyzed based on building energy simulations using energyplus 8.1 building simulation program and jEPlus+EA optimization tool.

Wind Effects on Tall Buildings with a Porous Double-Skin Façade

  • Shengyu Tian;Cassandra Brigden;Caroline Kingsford;Gang Hu;Robert Ong;K.C.S. Kwok
    • 국제초고층학회논문집
    • /
    • 제11권4호
    • /
    • pp.265-276
    • /
    • 2022
  • Double-Skin Facades (DSF) on tall buildings are becoming increasingly common in urban environments due to their ability to provide architectural merit, passive design, acoustic control and even improved structural efficiency. This study aims to understand the effects of porous DSF on the aerodynamic characteristics of tall buildings using wind tunnel tests. High Frequency Force Balance and pressure tests were performed on the CAARC standard tall building model with a variable porous DSF on the windward face. The introduction of a porous DSF did not adversely affect the overall mean forces and moments experienced by the building, with few differences compared to the standard tall building model. There was also minimal variation between the results for the three porosities tested: 50%, 65% and 80%. The presence of a full-height porous DSF was shown to effectively reduce the mean and fluctuating wind pressure on the side face of the building by about 10%, and a porous DSF over the lower half height of the building was almost as effective. This indicates that the porous DSF could be used to reduce the design load on cladding and fixtures on the side faces of tall buildings, where most damage to facades typically occurs.

Design review on indoor environment of museum buildings in hot-humid tropical climate

  • Ogwu, Ikechukwu;Long, Zhilin;Okonkwo, Moses M.;Zhang, Xuhui;Lee, Deuckhang;Zhang, Wei
    • Advances in Computational Design
    • /
    • 제7권4호
    • /
    • pp.321-343
    • /
    • 2022
  • Museum buildings display artefacts for public education and enjoyment, ensuring their long-term safety and the comfort of visitors by following strict indoor environment control protocols using mechanical Heating, Ventilation and Air Conditioning (HVAC) systems to keep the (environmental) variables at a fixed comfort level. Maintaining this requires constant supply of energy currently mostly sourced from the combustion of fossil fuels which exacerbates climate change. However, a review on the effects of the indoor environmental variables on museum artefacts as well as museum visitors revealed that there is no specific point at which artefact deterioration occurs, and that there are wide ranges of conditions that guarantee the long-term safety of artefacts and human comfort. Visits to museum buildings in hot-humid tropical climate of Nigeria revealed that strict indoor environmental practices were adopted. Even when appropriate micro-climatic conditions are provided for artefacts, mechanical HVAC systems remain necessary for visitor comfort because almost no consideration is given to natural ventilation. With the current global push towards energy management, this paper reviewed passive environmental control practices, architectural design strategies, and discusses the adaptation of double skin façade with jali screens, and the notion of smart materials, which can satisfy the range of requirements for the long-term safety of artefacts and levels of human comfort in buildings in hot-humid tropical climate, without mechanical HVAC systems. This review would inspire more discussions on passive, energy efficient, smart and climate responsible popular architecture, challenging current thinking on the impact of the more accepted representative architecture.

인도네시아 레스토랑에 나타난 전통 공간구성요소의 현대적 표현 특성 (The Characteristics of Comtemporary Expression of Traditional Space Components Appearing in Indonesian Restaurants)

  • 강유나;오혜경
    • 한국실내디자인학회논문집
    • /
    • 제20권6호
    • /
    • pp.254-261
    • /
    • 2011
  • The purpose of this study was to investigate the characteristic as to how the Indonesian traditional space is expressed in a contemporary space. As for the study method, We visited 12 Indonesian restaurants in Jakarta from Oct. 16 to Oct. 20, 2010 for a case study. The study result is presented as follows: First, as a factor of facade components, the roof part revealed its identity as a Joglo structure. Walls, windows and doors reflected Indonesian tradition, or were transformed in passive or aggressive ways. Second, as a factor of interior space components, ceilings were predominantly designed by reflecting a structural exposure ceiling or Tumpang Sari as it was or by passively transforming them; Interior walls, windows and doors were transformed in aggressive ways. Third, regarding the factors of interior decoration components, traditional furniture was not used, but instead, furniture with contemporary form and local materials were dominently used, and traditional accessaries were used as they were. Therefore, in the case of designing spatial componentss in Indonesian restaurants located in Jakarta, roofs and ceilings, floors, furniture, and accessaries reflected Indonesian tradition, or were passively transformed, whereas walls, windows, doors, and some ceilings aggressively reflected modernized tradition so that they were formed in harmony with traditional and contemporary styles.

동절기 이중외피 시스템에 적용 가능한 PCM재료의 온도설정에 따른 실내 열 성능 분석에 관한 연구 (Study on Indoor Thermal Performance Analysis upon PCM Temperature applicable to the Double Skin Facade System in the Winter)

  • 류리;서장후;김용성
    • KIEAE Journal
    • /
    • 제15권3호
    • /
    • pp.43-48
    • /
    • 2015
  • Purpose: Recently, many countries around the world are actively looking for the ways to make full use of natural energy sources and also develop and apply an environmentally friendly system designed to save building energy consumption. Under these circumstances, this study intended to determine the applicability and energy saving effect by deriving the indoor thermal performance characteristics and the PCM temperature appropriate for a double skin façade to reduce indoor energy consumption through the application of different PCM temperatures to double skin façade and perform a performance evaluation depending on the application or non-application of PCM to a double skin façade. Method: For this study, the physical variables of the double skin façade with PCM were configured through a preliminary examination based on an experimental measurement, and experimental measurements were taken with a total of 7 types of mockup cases: Type-1 (Basic), the basic double skin façade, Type-2 (PCM $18^{\circ}C$) which was applied to the inner skin of the double skin façade depending on the phase-change temperature of PCM, Type-3 (PCM $20^{\circ}C$), Type-4 (PCM $22^{\circ}C$), Type-5 (PCM $24^{\circ}C$), Type-6 (PCM $26^{\circ}C$), and Type-7 (PCM $28^{\circ}C$) with reference to the data analysis of the basic double skin façade which preceded this study, to analyze the indoor thermal performance of the double skin façade depending on PCM temperature and the installation or non-installation of a double skin façade applying PCM based on the selected unit space. Result: Indoor thermal performance was analyzed depending on the PCM temperature applicable to double skin façade, and the analysis of heating energy reduction showed that Type-2 (PCM $18^{\circ}C$) gained 15.9% more heat compared with Type-1 (Basic) and secondly, Type-3 (PCM $20^{\circ}C$) gained 11.5% more heat. Based on these findings, it is deemed possible that the use of energy for heating can be reduced when heat coming indoors increases during the heating period, and the appropriate temperature for PCM applied to the inner skin of a double skin façade to reduce heating energy in winter, Type-2 (PCM $18^{\circ}C$) showed the highest efficiency and Type-3 (PCM $20^{\circ}C$) was also deemed appropriate.

Comprehensive Field Measurement of Indoor Air and Thermal Quality in Naturally Ventilated Office Building with Double-Skin Façade

  • Ito, Kazuhide;Shiraishi, Yasuyuki
    • 국제초고층학회논문집
    • /
    • 제2권4호
    • /
    • pp.293-314
    • /
    • 2013
  • Double-Skin Façade (DSF), which is a kind of passive indoor environmental control technique, is effective way to control environmental loads while maintaining the transparency especially in perimeter zone and hence the adoption example of DSF keep increasing recently. The objective of this study was to perform a field survey of air quality environment with natural ventilation through DSF and thermal environment within office building with six stories during a mild climate period in Japan. Moreover, to understand the comprehensive environmental performance of the target building, questionnaire survey was conducted to subjectively evaluate the productivity and satisfaction with the environmental factors in office space. In this field measurement, there was a positive correlation between the DSF internal ventilation flow and the amount of solar radiation on the DSF normal surface; the primary driving force for ventilation in the DSF was considered to be the buoyancy force caused by solar radiation. The results of questionnaire survey with regard to productivity level indicated the need for improvement in the thermal (temperature) and spatial environment (room size and furniture placement).

The Impact of Double-Skin Façades on Indoor Airflow in Naturally Ventilated Tall Office Buildings

  • Yohan, Kim;Mahjoub M. Elnimeiri;Raymond J. Clark
    • 국제초고층학회논문집
    • /
    • 제12권2호
    • /
    • pp.129-136
    • /
    • 2023
  • Natural ventilation has proven to be an effective passive strategy in improving energy efficiency and providing healthy environments. However, such a strategy has not been commonly adopted to tall office buildings that traditionally rely on single-skin façades (SSFs), due to the high wind pressure that creates excessive air velocities and occupant discomfort at upper floors. Double-skin façades (DSFs) can provide an opportunity to facilitate natural ventilation in tall office buildings, as the fundamental components such as the additional skin and openings create a buffer to regulate the direct impact of wind pressure and the airflow around the buildings. This study investigates the impact of modified multi-story type DSFs on indoor airflow in a 60-story, 780-foot (238 m) naturally ventilated tall office building under isothermal conditions. Thus, the performance of wind effect related components was assessed based on the criteria (e.g., air velocity and airflow distribution), particularly with respect to opening size. Computational fluid dynamics (CFD) was utilized to simulate outdoor airflow around the tall office building, and indoor airflow at multiple heights in case of various DSF opening configurations. The simulation results indicate that the outer skin opening is the more influential parameter than the inner skin opening on the indoor airflow behavior. On the other hand, the variations of inner skin opening size help improve the indoor airflow with respect to the desired air velocity and airflow distribution. Despite some vortexes observed in the indoor spaces, cross ventilation can occur as positive pressure on the windward side and negative pressure on the other sides generate productive pressure differential. The results also demonstrate that DSFs with smaller openings suitably reduce not only the impact of wind pressure, but also the concentration of high air velocity near the windows on the windward side, compared to SSFs. Further insight on indoor airflow behaviors depending on DSF opening configurations leads to a better understanding of the DSF design strategies for effective natural ventilation in tall office buildings.