• Title/Summary/Keyword: passive damping

Search Result 311, Processing Time 0.027 seconds

A study on the variable damping characteristics of the continuous controlled semi-active suspension system and the effect analysis of the vehicles motion performance (연속제어방식의 반능동형 전자제어 현가장치의 가변댐퍼 감쇠력 특성 연구 및 차량 운동성능에 미치는 효과 분석)

  • 소상균;조경일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.190-198
    • /
    • 1999
  • Continuously controlled semi-active suspension system may improve ride and handling properties. Here, as a mechanism to control the fluid flow solenoid valve mechanism is introduced and added to the basic passive damper to create damping forces of the shock absorbers. The system may produce continuously controlled damping forces in both solenoid valve only and combination with passive shock absorber including fluid flow is studied, and then the combined model is added to the full vehicle model to evaluate its ride and handling performance. Finally, the simulation results are compared to the vehicle models having similar suspension system.

  • PDF

Performance verification of Smart Complex Damping System for Suppressing Vibration of Stay Cable (케이블 진동 저감을 위한 스마트 복합 감쇠 시스템의 성능평가)

  • Park, Chul-Min;Jung, Hyung-Jo;Ko, Man-Gi;Lee, In-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.453-460
    • /
    • 2006
  • Stay cables, such as used in cable-stayed bridges, are prone to vibration due to their low inherent damping characteristics. Recently some studies have shown that active and semiactive control system using MR damper can potentially achieve both higher performance levels than passive control system and adaptability with few of the detractions. However, a control system including a power supply, controller, and sensors is required to maximize the performance of the MR damper and this complicated control system is not effective to most of large civil structures. This paper proposes a smart complex damping system which consists of toggle system and MR dampers by introducing electromagnetic induction(EMI) system as an external power source to MR damper. The performance of the proposed damping device has been compared with that of the passive-type control systems employing a MR damper, a linear viscous damper, and EMI system.

  • PDF

Performance of Adaptive TMD for Tall Building Damping

  • Weber, Felix;Yalniz, Fatih;Kerner, Deniz;Huber, Peter
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.2
    • /
    • pp.99-107
    • /
    • 2021
  • This research investigates the potential of Adaptive TMDs for tall building damping. The Adaptive TMD under consideration is based on real-time controlled hydraulic dampers generating purely dissipative control forces. The control approach is designed to enhance the Adaptive TMD efficiency for moderate wind loads with return periods below 50 years. The resulting enhanced TMD efficiency is used to reduce the pendulum mass by 15% compared to the passive TMD while still guaranteeing the acceleration limits of the one and ten year return period winds. Furthermore, the adaptive control approach is designed to disproportionally increase the controlled damping force at wind loads with return periods of 50 years and more in order to reduce the maximum relative motion of the Adaptive TMD with only 85% pendulum mass. Compared to the passive TMD with 100% pendulum mass the maximum relative motion is reduced by 20%. Both the pendulum mass reduction and the maximum relative motion reduction significantly reduce the foot print of the Adaptive TMD which is highly desirable from the economic point of view.

Vibration control laws via shunted piezoelectric transducers: A review

  • Qureshi, Ehtesham Mustafa;Shen, Xing;Chen, JinJin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.1-19
    • /
    • 2014
  • Attaching a piezoelectric transducer to a vibrating structure, and shunting it with an electric circuit, gives rise to different passive, semi-passive, and semi-active control techniques. This paper attempts to review the research related to structural vibration control, via passive, semi-passive, and semi-active control methods. First, the existing electromechanical modeling is reviewed, along with the modeling methods. These range from lumped parameters, to distributed parameters modeling of piezostructural systems shunted by electrical networks. Vibration control laws are then discussed, covering passive, semi-passive, and semi-active control techniques, which are classified according to whether external power is supplied to the piezoelectric transducers, or not. Emphasis is placed on recent articles covering semi-passive and semi-active control techniques, based upon switched shunt circuits. This review provides the necessary background material for researchers interested in the growing field of vibration damping and control, via shunted piezostructural systems.

Passive Vibration Suppression With an Enhanced Shunted Piezoelectric Circuit (강화된 Piezoelectric Shunt Circuit에 의한 수동진동제어 연구)

  • Kim, W.C.;Park, C.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.4
    • /
    • pp.36-44
    • /
    • 1999
  • 회로내에 capacitor를 부가 연결시켜 이론과 실험적으로 고찰한 새로운 기법의 연구이다. 종래에 사용되어 온 전자회로는 낮은 주파수의 진동진폭을 억제할 때에 큰 inductance 값을 필요로 하는 결점이 있었다. 이런 문제점을 해결하기 위하여 본 연구에서는 강화된 압전 분권회로에 병렬로 capacitor를 연결하도록 설계하였다. 새로운 기법은 기계적인 analogy 이론에 의해 증명을 하였으며, 알루미늄 보에 대하여 필요한 동조 모드에서 실험적으로 입증하였다. 따라서 이러한 결과들은 electronic passive damping 에 있어서 예전부터 요구되어 온 절반정도의 inductance값만으로도 구조물의 진동응답을 아주 심도 있게 감소시킬 수 있다는 것을 보여주고 있다.

  • PDF

The Properties of Optimal Passive Tuned Mass Dampers (최적 수동 동조질량감쇠기의 특성)

  • 노필성;강병두;김재웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.165-172
    • /
    • 1996
  • Recently, the response of a high-rise building to external dynamic force created by wind and earthquake has received much attention. This response is dependent on wind intensity, surrounding environment, building size, shape, mass, stiffness and amount of energy dissipation available in the system. The study has been done on these parameters. Attempts have been made to increase the damping in building system and thereby reduce structural response. These attempts have centered on adding an energy-dissipative system(passive tuned mass damper; passive TMD) to the building system and increasing the overall effective damping. In this paper the optimum condition of passive TMD will be derived with respect to random excitation and the properties of the optimum condition will have been studied.

  • PDF

Full-scale test of dampers for stay cable vibration mitigation and improvement measures

  • Zhou, Haijun;Xiang, Ning;Huang, Xigui;Sun, Limin;Xing, Feng;Zhou, Rui
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.4
    • /
    • pp.489-506
    • /
    • 2018
  • This paper reported test of full-scale cables attached with four types of dampers: viscous damper, passive Magneto-Rheological (MR) damper, friction damper and High Damping Rubber (HDR) damper. The logarithmic decrements of the cable with attached dampers were calculated from free vibration time history. The efficiency ratios of the mean damping ratios of the tested four dampers to theoretical maximum damping ratio were derived, which was very important for practical damper design and parameter optimization. Non-ideal factors affecting damper performance were discussed based on the test results. The effects of concentrated mass and negative stiffness were discussed in detail and compared theoretically. Approximate formulations were derived and verified using numerical solutions. The critical values for non-dimensional concentrated mass coefficient and negative stiffness were identified. Efficiency ratios were approximately 0.6, 0.6, and 0.3 for the viscous damper, passive MR damper and HDR damper, respectively. The efficiency ratio for the friction damper was between 0-1.0. The effects of concentrated mass and negative stiffness on cable damping were positive as both could increase damping ratio; the concentrated mass was more effective than negative stiffness for higher vibration modes.

Vibration Control of Laminated Composite Beams using Active Constrained Layer Damping Treatment (능동구속감쇠 기법을 이용한 복합적층보의 진동제어)

  • Kang, Young-Kyu;Kim, Jae-Hwan;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1333-1337
    • /
    • 2000
  • The flexural vibration of laminated composite beams with active and passive constrained-layer damping has been investigated to design structure with maximum possible damping capacity. The equations of motion are derived for flexural vibrations of symmetrical, multi-layer laminated beams. The damping ratio and modal damping of the first bending mode are calculated by means of iterative complex eigensolution method. This paper addresses a design strategy of laminated composite under flexural vibrations with active control.

  • PDF

Passive Suppression of Nonlinear Panel Flutter Using Piezoelectric Materials with Resonant Circuit

  • Moon, Seong-Hwan;Yun, Chul-Yong;Kim, Seung-Jo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • In this study, a passive suppression scheme for nonlinear flutter problem of composite panel, which is believed to be more reliable than the active control methods in practical operations, is proposed. This scheme utilizes a piezoelectric inductor-resistor series shunt circuit. The finite element equations of motion for an electromechanically coupled system is derived by applying the Hamilton\\`s principle. The aerodynamic theory adopted for the present study is based on the quasi-steady piston theory, and von-barman nonlinear strain-displacement relation is also applied. The passive suppression results for nonlinear panel flutter are obtained in the time domain using the Newmark-$\beta$ method. To achieve the best damping effect, optimal shape and location of fille piezoceramic (PZT) patches are determined by using genetic algorithms. The effects of passive suppression are investigated by employing in turn one shunt circuit and two independent shunt circuits. Feasibility studies show that two independent inductor-resistor shunt circuits suppresses flutter more effectively than a single shunt circuit. The results clearly demonstrate that the passive damping scheme that uses piezoelectric shunt circuit can effectively attenuate the flutter.

Generalized complex mode superposition approach for non-classically damped systems

  • Chen, Huating;Liu, Yanhui;Tan, Ping
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.271-286
    • /
    • 2020
  • Passive control technologies are commonly used in several areas to suppress structural vibrations by the addition of supplementary damping, and some modal damping may be heavy beyond critical damping even for regular structures with energy dissipation devices. The design of passive control structures is typically based on (complex) mode superposition approaches. However, the conventional mode superposition approach is predominantly applied to cases of under-critical damping. Moreover, when any modal damping ratio is equal or close to 1.0, the system becomes defective, i.e., a complete set of eigenvectors cannot be obtained such that some well-known algorithms for the quadratic eigenvalue problem are invalid. In this paper, a generalized complex mode superposition method that is suitable for under-critical, critical and over-critical damping is proposed and expressed in a unified form for structural displacement, velocity and acceleration responses. In the new method, the conventional algorithm for the eigenvalue problem is still valid, even though the system becomes defective due to critical modal damping. Based on the modal truncation error analysis, modal corrected methods for displacement and acceleration responses are developed to approximately consider the contribution of the truncated higher modes. Finally, the implementation of the proposed methods is presented through two numerical examples, and the effectiveness is investigated. The results also show that over-critically damped modes have a significant impact on structural responses. This study is a development of the original complex mode superposition method and can be applied well to dynamic analyses of non-classically damped systems.