• Title/Summary/Keyword: passive damping

Search Result 311, Processing Time 0.029 seconds

Novel Control and Design Method for Wide Stability Range of Grid Connected Inverter with LCL Filter (LCL 필터를 사용하는 계통 연계형 인버터의 넓은 안정 영역을 갖는 새로운 제어 및 설계 기법)

  • Park, Kwon-Sik;Seo, Byung-Jun;Kim, Hak-Soo;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.6
    • /
    • pp.440-445
    • /
    • 2018
  • This study proposes a novel control and design method for a grid-connected inverter with an LCL filter without damping. The current resonance phenomenon must be considered when designing the grid-connected inverter system with an LCL filter. Passive or active damping is used in the inverter system to reduce the resonant current. However, passive damping reduces the efficiency of the system, and active damping methods are complex. If the resonant frequency is in a specific region, then the system will be unstable. This study examines the process of stabilizing the entire region without resonant damping. The validity of the proposed method is verified through simulation and experimentation.

Equivalent damping of a structure with vibration control devices subjected to wind loads

  • Hwang, Jae-Seung;Kim, Jinkoo;Lee, Sang-Hyun;Min, Kyung-Won
    • Wind and Structures
    • /
    • v.6 no.4
    • /
    • pp.249-262
    • /
    • 2003
  • The purpose of this study is to propose a procedure for evaluating quantitatively the increase of the equivalent damping ratio of a structure with passive/active vibration control systems subjected to a stationary wind load. A Lyapunov function governing the response of a structure and its differential equation are formulated first. Then the state-space equation of the structure coupled with the secondary damping system is solved. The results are substituted into the differential equation of the Lyapunov function and its derivative. The equivalent damping ratios are obtained from the Lyapunov function of the combined system and its derivative, and are used to assess the control effect of various damping devices quantitatively. The accuracy of the proposed procedure is confirmed by applying it to a structure with nonlinear as well as linear passive/active control systems.

Hybrid Vibration Control of Smart Laminated Composite Beams using Piezoelectric and Viscoelastic Material

  • Kang, Young-Kyu
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.1
    • /
    • pp.37-42
    • /
    • 2003
  • Active control of flexural vibrations of smart laminated composite beams has been carried out using piezoceramic sensor/actuator and viscoelastic material. The beams with passive constrained layer damping have been analyzed by formulating the equations of motion through the use of extended Hamilton's principle. The dynamic characteristics such as damping ratio and modal damping of the beam are calculated for various fiber orientations by means of iterative complex eigensolution method. This paper addresses a design strategy of laminated composite under flexural vibrations to design structure with maximum possible damping capacity.

Multi-mode noise reduction of using piezoelectric shunt damping smart panels (압전 션트를 이용한 패널의 다중 모드 소음 저감에 관한 연구)

  • Kim, Joon-Hyoung;Kim, Jaehwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.327.2-327
    • /
    • 2002
  • In this paper, the transmitted noise reduction of smart panels of which passive piezoelectric shunt damping is used, is experimentally studied. Shunt damping experiments are based on the measured electrical impedance model. A passive shunt circuit composed of inductor, and load resistor is devised to dissipate the maximum energy into the joule heat energy For multi mode shunt damping, the shunt circuit is redesigned by adding a blocking circuit. (omitted)

  • PDF

Vibration Control of Laminated Composite Beams Using Active Constrained Layer Damping Treatment (능동구속감쇠 기법을 이용한 복합적층보의 진동 제어)

  • 강영규;최승복
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.7
    • /
    • pp.261-266
    • /
    • 2001
  • The flexural vibration of laminated composite beams with active and passive constrained layer damping has been investigated to design a structure with maximum possible damping capacity. The equations of motion are derived fro flexural vibrations of symmetrical,. multi-layer laminated beams. The damping ratio and model damping of the first bending mode are calculated by means of iterative complex eigensolution method. The direct negative velocity feedback control is used for the active constrained layer damping. It is shown that the flexible laminated beam is more effective in the vibration control for both active and passive constrained layer damping. and this paper addresses a design strategy of laminated composite under flexural vibrations with constrained layer damping.

  • PDF

Sound Control of Structural-acoustic Coupling System Using Optimum Layout of Absorbing Material and Damping Material (흡음재 및 제진재의 최적배치를 이용한 구조-음향 연성계의 소음제어)

  • Kim, Dong-Young;Hong, Do-Kwan;Ahn, Chan-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.161-168
    • /
    • 2005
  • The absorbing material is mostly used to changing the acoustic energy to the heat energy in the passive control, and that consists of the porous media. That controls an air borne noise while the stiffened plates, damping material and additional mass control a structure borne noise. The additional mass can decrease the sound by mass effect and shift of natural frequency, and damping material can decrease the sound by damping effect. The passive acoustic control using these kinds of control materials has an advantage that is possible to control the acoustic in the wide frequency band and the whole space at a price as compared with the active control using the various electronic circuit and actuator. But the space efficiency decreased and the control ability isn't up to the active control. So it is necessary to maximize the control ability in the specific frequency to raise the capacity of passive control minimizing the diminution of space efficiency such an active control. Therefore, the characteristics of control materials and the optimum layout of control materials that attached to the boundary of structure-acoustic coupled cavity were studied using sequential optimization on this study.

Experimental and numerical study on the dynamic behavior of a semi-active impact damper

  • Zheng Lu;Mengyao Zhou;Jiawei Zhang;Zhikuang Huang;Sami F. Masri
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.455-467
    • /
    • 2023
  • Impact damper is a passive damping system that controls undesirable vibration with mass block impacting with stops fixed to the excited structure, introducing momentum exchange and energy dissipation. However, harmful momentum exchange may occur in the random excitation increasing structural response. Based on the mechanism of impact damping system, a semi-active impact damper (SAID) with controllable impact timing as well as a semi-active control strategy is proposed to enhance the seismic performance of engineering structures in this paper. Comparative experimental studies were conducted to investigate the damping performances of the passive impact damper and SAID. The extreme working conditions for SAID were also discussed and approaches to enhance the damping effect under high-intensity excitations were proposed. A numerical simulation model of SAID attached to a frame structure was established to further explore the damping mechanism. The experimental and numerical results show that the SAID has better control effect than the traditional passive impact damper and can effectively broaden the damping frequency band. The parametric studies illustrate the mass ratio and impact damping ratio of SAID can significantly influence the vibration control effect by affecting the impact force.

A Study on the Effects of the Period Control Device of Anti-Rolling Tanks (감요수조의 주기조절 장치 효과에 관한 연구)

  • 유재문;김효철;이현엽
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • The effect of the passive anti-rolling tanks(ART) decreases when the roll period of the vessel does not match the designed oscillating period of the fluid in the tank. In order to improve the effect of the passive ART, the damping plates are installed in the lower duct of the ART to adjust the oscillating period of the fluid. The effects of the damping plates on the oscillating period of the fluid and the changes of the stabilizing moments are examined through the series of bench tests. Acryl model tank larger than 1m breadth is made to minimize the viscous effect of the tank and the stabilizing moments of the tank are measured for various roll angles. Using the obtained tank damping coefficient, RAO(Response Amplitude Operator) value in the resonance range is computed and the stabilizing effect of a ART has been estimated.

Vibration Control of Tower Structure under Wind Load (풍하중에 의한 타원형 구조물의 진동 제어)

  • Hwang Jae-Seung;Kim Yun-Seok;Joo Seok-Jun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.427-430
    • /
    • 2002
  • The present parer outlines the system identification and vibration control performance of air traffic control tower of Yangyang international airport with tuned mass damper(TMD). From the free vibration test, natural frequency, damping ratio and mode shape of tower are obtained and these values are compared with the values from numerical analysis. In the vibration control test to evaluate the vibration control performance, equivalent damping ratio increased by tuned mass damper are obtained in case the TMD is operated as passive mode. Damping ratio of tower evaluated from free vibration test is about $1.0{\%}$. It is very low value than damping ratio recommended in general code. Damping ratio of passive mode is about $5{\%}$. These equivalent damping ratio increased by TMD is enough to enhance the serviceability of tower structure under wind load.

  • PDF

Performance Verification of Smart Passive Damping System using MR damper (자기유변유체 감쇠기에 기반한 스마트 수동 감쇠 시스템의 성능 평가)

  • Cho, Sang-Won;Jang, Ji-Eun;Yoon, Woo-Hyun;Lee, In-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.505-512
    • /
    • 2005
  • MR damper is one of the most promising control devices for civil engineering applications to earthquake hazard mitigation. However, a control system including a power supply, controller, and sensors is required to maximize the performance of the MR damper and this complicated control system is not effective to most of large civil structures. This paper proposes and experimentally verified a smart passive damping system using MR(Magnetorheological) dampers by introducing electromagnetic induction(EMI) system as an external power source to MR damper. It is easy to build up and maintain EMI system, because it does not require any control system such as a power supply, controller, and sensors. Numerical simulations using experimental model of EMI system are carried to verify the effectiveness of the proposed EMI system. The performances of smart passive damping system are compared with those of passive and semiactive MR dampers.

  • PDF