• Title/Summary/Keyword: passive dampers

Search Result 165, Processing Time 0.018 seconds

Strategic width-wise arrangement of viscous dampers in steel buildings under strong earthquakes

  • Huang, Xiameng
    • Earthquakes and Structures
    • /
    • v.20 no.2
    • /
    • pp.225-238
    • /
    • 2021
  • Supplemental passive dampers are widely employed to improve the structural performance of buildings under seismic excitations. Nevertheless, the added damping could be counter-productive if the axial forces induced by the damper reaction forces are not routed properly in the columns. A few researchers engaged to optimize the width-wise damper arrangement to improve the delivered path of the axial column forces. However, most of these studies are limited under the design-based seismic level and few of them has evaluated the collapse performance of buildings under strong earthquakes. In this paper, the strategic width-wise placement method of viscous dampers is explored regarding the building performance under collapse state. Two realistic steel buildings with different storeys are modelled and compared to explore higher mode effects. Each building is designed with four different damper arrangement scenarios based on a classic damper distribution method. Both a far-fault and a near-fault seismic environment are considered for the buildings. Incremental Dynamic Analysis (IDA) is performed to evaluate the probability of collapse and the plastic mechanism of the retrofitted steel buildings.

Seismic response control of elastic and inelastic structures by using passive and semi-active tuned mass dampers

  • Woo, Sung-Sik;Lee, Sang-Hyun;Chung, Lan
    • Smart Structures and Systems
    • /
    • v.8 no.3
    • /
    • pp.239-252
    • /
    • 2011
  • In this study, the performances of a passive tuned mass damper (TMD) and a semi-active TMD (STMD) were evaluated in terms of seismic response control of elastic and inelastic structures under seismic loads. First, elastic displacement spectra were obtained for damped structures with a passive TMD and with a STMD proposed in this study. The displacement spectra confirmed that the STMD provided much better control performance than passive TMD and the STMD had less stroke requirement. Also, the robustness of the TMD was evaluated by off-tuning the frequency of the TMD to that of the structure. Finally, numerical analyses were conducted for an inelastic structure of hysteresis described by the Bouc-Wen model. The results indicated that the performance of the passive TMD whose design parameters were optimized for an elastic structure considerably deteriorated when the hysteretic portion of the structural responses increased, and that the STMD showed about 15-40% more response reduction than the TMD.

A simplified design procedure for seismic retrofit of earthquake-damaged RC frames with viscous dampers

  • Weng, D.G.;Zhang, C.;Lu, X.L.;Zeng, S.;Zhang, S.M.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.5
    • /
    • pp.611-631
    • /
    • 2012
  • The passive energy dissipation technology has been proven to be reliable and robust for recent practical applications. Various dampers or energy dissipation devices have been widely used in building structures for enhancing their performances during earthquakes, windstorm and other severe loading scenarios. This paper presents a simplified seismic design procedure for retrofitting earthquake-damaged frames with viscous dampers. With the scheme of designing the main frame and the supplemental viscous dampers respectively, the seismic analysis model of damped structure with viscous dampers and braces was studied. The specific analysis process was described and approach to parameter design of energy dissipation components was also proposed. The expected damping forces for damped frame were first obtained based on storey shear forces; and then they were optimized to meet different storey drift requirements. A retrofit project of a RC frame school building damaged in the 2008 Wenchuan earthquake was introduced as a case study. This building was retrofitted by using viscous dampers designed through the simplified design procedure proposed in this paper. Based on the case study, it is concluded that this simplified design procedure can be effectively used to make seismic retrofit design of earthquake-damaged RC frames with viscous dampers, so as to achieve structural performance objectives under different earthquake risk levels.

Numerical investigation of an MR damper-based smart passive control system for mitigating vibration of stay cables

  • Kim, In-Ho;Jung, Hyung-Jo;Kim, Jeong-Tae
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.443-458
    • /
    • 2011
  • An extensive numerical investigation on the magnetorheological (MR) damper-based smart passive control system for mitigating vibration of stay cables under wind loads has been conducted. The smart passive system is incorporated with an electromagnetic induction (EMI) device for reducing complexity of the conventional MR damper based semi-active control system by eliminating an external power supply part and a feedback control part (i.e., sensors and controller). In this study, the control performance of the smart passive system has been evaluated by using a cable structure model extracted from a full-scale long stay cable with high tension. Numerical simulation results of the proposed smart damping system are compared with those of the passive and semi-active control systems employing MR dampers. It is demonstrated from the results that the control performance of the smart passive control system is better than those of the passive control cases and comparable to those of the semi-active control systems in the forced vibration analysis as well as the free vibration analysis, even though there is no external power source in the smart passive system.

Control of a building complex with Magneto-Rheological Dampers and Tuned Mass Damper

  • Amini, F.;Doroudi, R.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.2
    • /
    • pp.181-195
    • /
    • 2010
  • Coupled building control is a viable method to protect tall buildings from seismic excitation. In this study, the semi-active control of a building complex is investigated for mitigating seismic responses. The building complex is formed of one main building and one podium structure connected through Magneto-Rheological (MR) Dampers and Tuned Mass Damper. The conventional semi-active control techniques require a primary controller as a reference to determine the desired control force, and modulate the input voltage of the MR damper by comparing the desired control force. The fuzzy logic directly determines the input voltage of an MR damper from the response of the MR damper. The control performance of the proposed fuzzy control technique for the MR damper is evaluated for the control problem of a seismically-excited building complex. In this paper, a building complex that include a 14-story main building and an 8-story podium structure is applied as a numerical example to demonstrate the effectiveness of semi-active control with Magneto-Rheological dampers and its comparison with the passive control with the Tuned Mass Damper and two uncoupled buildings and hybrid semi-active control including the Tuned Mass Damper and Magneto-Rheological dampers while they are subject to the earthquake excitation. The numerical results show that semi-active control and hybrid semi-active control can significantly mitigate the seismic responses of both buildings, such as displacement and shear force responses, and fuzzy control technique can effectively mitigate the seismic response of the building complex.

Multiple wall dampers for multi-mode vibration control of building structures under earthquake excitation

  • Rahman, Mohammad Sabbir;Chang, Seongkyu;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.537-549
    • /
    • 2017
  • One of the main concerns of civil engineering researchers is developing or modifying an energy dissipation system that can effectively control structural vibrations, and keep the structural response within tolerable limits during unpredictable events like earthquakes, wind and any kind of thrust load. This article proposes a new type of mass damper system for controlling wideband earthquake vibrations, called Multiple Wall Dampers (MWD). The basic principle of the Tuned Mass Damper (TMD) was used to design the proposed wall damper system. This passive energy dissipation system does not require additional mass for the damping system because the boundary wall mass of the building was used as a damper mass. The multi-mode approach was applied to determine the location and design parameters of the dampers. The dampers were installed based on the maximum amplitude of modes. To optimize the damper parameters, the multi-objective optimization Response Surface Methodology was used, with frequency response and maximum displacement as the objective functions. The obtained structural responses under different earthquake forces demonstrated that the MWD is one of the most capable tools for reducing the responses of multi-storied buildings, and this system can be practically used for new and existing building structures.

Vibration mitigation of stay cable using optimally tuned MR damper

  • Huang, Hongwei;Sun, Limin;Jiang, Xiaolu
    • Smart Structures and Systems
    • /
    • v.9 no.1
    • /
    • pp.35-53
    • /
    • 2012
  • Mechanical dampers have been proved to be one of the most effective countermeasures for vibration mitigation of stay cables in various cable-stayed bridges over the world. However, for long stay cables, as the installation height of the damper is restricted due to the aesthetic concern, using passive dampers alone may not satisfy the control requirement of the stay cables. In this connection, semi-active MR dampers have been proposed for the vibration mitigation of long stay cables. Although various studies have been carried out on the implementation of MR dampers on stay cables, the optimal damping performance of the cable-MR damper system has yet to be evaluated. Therefore, this paper aims to investigate the effectiveness of MR damper as a semi-active control device for the vibration mitigation of stay cable. The mathematical model of the MR damper will first be established through a performance test. Then, an efficient semi-active control strategy will be derived, where the damping of MR damper will be tuned according to the dynamic characteristics of stay cable, in order to achieve optimal damping of cable-damper system. Simulation study will be carried out to verify the proposed semi-active control algorithm for suppressing the cable vibrations induced by different loading patterns using optimally tuned MR damper. Finally, the effectiveness of MR damper in mitigating multi modes of cable vibration will be examined theoretically.

The Properties of Optimal Passive Tuned Mass Dampers (최적 수동 동조질량감쇠기의 특성)

  • 노필성;강병두;김재웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.165-172
    • /
    • 1996
  • Recently, the response of a high-rise building to external dynamic force created by wind and earthquake has received much attention. This response is dependent on wind intensity, surrounding environment, building size, shape, mass, stiffness and amount of energy dissipation available in the system. The study has been done on these parameters. Attempts have been made to increase the damping in building system and thereby reduce structural response. These attempts have centered on adding an energy-dissipative system(passive tuned mass damper; passive TMD) to the building system and increasing the overall effective damping. In this paper the optimum condition of passive TMD will be derived with respect to random excitation and the properties of the optimum condition will have been studied.

  • PDF

Smart passive control of buildings with higher redundancy and robustness using base-isolation and inter-connection

  • Murase, Mitsuru;Tsuji, Masaaki;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.4 no.6
    • /
    • pp.649-670
    • /
    • 2013
  • It is known that a base-isolated building exhibits a large response to a long-duration, long-period wave and an inter-connected system without base-isolation shows a large response to a pulse-type wave. To compensate for each deficiency, a new hybrid passive control system is investigated in which a base-isolated building is connected to another building (free wall) with oil dampers. It is demonstrated that the present hybrid passive control system is effective both for pulse-type ground motions and long-duration and long-period ground motions and has high redundancy and robustness for a broad range of disturbances.

Performance analysis of vehicle suspension systems with negative stiffness

  • Shi, Xiang;Shi, Wei;Xing, Lanchang
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.141-155
    • /
    • 2019
  • This work evaluates the influence of negative stiffness on the performances of various vehicle suspension systems, and proposes a re-centering negative stiffness device (NSD). The re-centering NSD consists of a passive magnetic negative stiffness spring and a positioning shaft with a re-centering function. The former produces negative stiffness control forces, and the latter prevents the amplification of static spring deflection. The numerical simulations reveal that negative stiffness can improve the ride comfort of a vehicle without affecting its road holding abilities for either passive or semi-active suspension systems. In general, the improvement degree of ride comfort increases as negative stiffness increases. For passive suspension system, negative stiffness brings in negative stiffness feature in the control forces, which is helpful for the ride comfort of a vehicle. For semi-active suspensions, negative stiffness can alleviate the impact of clipped damping in semi-active dampers, and thus the ride comfort of a vehicle can be improved.