본 논문은 문서 단위 보다 작은 단락 단위의 검색 시스템을 사용하는 효율적인 질의 응답 시스템 개발을 위하여 문서 검색에서 성능이 검증된 Okapi 시스템의 BM25 알고리즘을 응용한 단락 검색 시스템을 제안하고, 단락 검색 시스템의 성능을 분석하고자 한다. 100만 건의 문서로 구성된 TREC Q&A track 테스트 컬렉션을 색인에 사용하고 TREC Q&A track 질의 집합 중 1~100번까지의 질의를 사용하여 실험한 결과 재현율이 100%가 되기 위해서는 문서 검색은 약 12만 문장을 검색해야 하는 반면, 단락 검색에서는 문서 검색의 약 1/70인 1700문장만으로도 100%의 재현율을 얻을 수 있음을 확인하였다.
다중 문서 기반 대화 시스템에서 응답 시스템은 올바른 답변을 생성하기 위해서 여러 개의 문서 중 질문과 가장 관련 있는 문서를 검색하는 것부터 시작해야 한다. DialDoc 2022 Shared Task[1]를 비롯한 최근의 연구들은 대화 시스템의 문서 검색 과정을 위해 Dense Passage Retrieval(DPR)[2] 모델을 사용하고 있으며 검색기의 성능 개선을 위해 Re-ranking과 Hard negative sampling 같은 방법들이 연구되고 있다. 본 논문에서는 문서에 기반하는 대화 데이터의 양이 적거나 제한될 경우, 주어진 데이터를 효율적으로 활용해 보고자 검색기를 생성 모델을 이용하여 문서의 엔티티를 기반으로 질문을 생성하고 기존 데이터에 증강하는 방법을 제시했으며 실험의 결과로 MRR metric의 경우 0.96 ~ 1.56의 성능 향상을, R@1 metric의 경우 1.2 ~ 1.57의 성능 향상을 확인하였다.
복수의 화제가 혼합되어 있는 문서에서 각 화제의 경계부분을 구분하여 결정하는 기술을 단락분할이라 한다. 이 기술은 정보검색의 분야에만 한정되지 않고 다양한 분야에서 중요한 역할을 담당할 기술이다. 잘 정의된 분야체계에 따라 구축된 분야연상어를 이용하여 단락분할을 시도한다. 분야연상어란 특정한 분야를 정확하게 연상할 수 있는 단어로서 잘 분류된 문서 컬렉션에서 구축할 수 있다. 이 분야연상어를 이용하여 문서를 관련된 분야별로 추출하여 의미기반 단락추출 방법을 제안한다. 화제의 계속성에 주목하여 분야연상어의 수준(범위)이나 연속출현성에 의해 계산된 계속도에 의해 화제의 실마리를 추적하고, 화제의 전환성을 고려한 방법을 제안한다. 문서 내 각 화제의 단락구분을 명확히 하여, 단락을 화제분야별로 추출하는 방법을 제안한다. 일본어 50문서를 실험한 결과 82%의 정확율과 63%의 재현율을 얻어 실용성을 기대할 수 있었고, 한국어에 적용하여도 좋을 것으로 예상한다.
오픈 도메인 질의응답 (ODQA, Open-Domain Question Answering)은 주어진 질문에 대한 답을 찾는 작업으로 일반적으로 질문과 관련 있는 지식을 검색 모델(Retrieval)을 통해 찾는 단계와, 찾은 지식에서 문서의 정답을 독해 모델(Reader)을 이용하여 찾는 단계로 구성되어 있다. 본 논문은 기존의 DPR(Dense Passage Retrieval)을 이용한 복수의 검색 모델(Retrieval)만을 계층적으로 사용하여 독해 모델(Reader)을 사용하지 않고 정답 문장을 찾는 방법과 정답 문장을 찾는 데 특화된 검색 모델 학습을 위한 유효한 성능 향상을 보이는 Hard Negative Sampling 기법을 제안한다. 해당 제안기법을 적용한 결과, 동일 조건에서 학습된 검색 - 독해(Retrieval-Reader) 구조의 베이스라인 모델보다 EM에서 12%, F1에서 10%의 성능 향상을 보였다.
본 연구에서는 공기기반 질의-용어간 유사도를 이용한 질의확장을 통해 단락검색의 성능을 향상시키는 방안을 제시하고자 하였다 실험을 통해 전체 문헌집단에 출현한 용어들의 공기정보에 기반한 전역적 질의확장과 이용자의 피드백 없이 초기검색 결과 중 상위 10개 문헌에 출현한 용어들의 공기정보에 기반한 지역적 질의확장의 성능을 비교하고 각각의 성능을 향상시키는 방법을 모색하였다. 마지막으로 문헌집단의 전역 정보와 지역 정보를 함께 이용하는 방안을 제시하고 그 성능을 평가하였다.
이 연구에서 구현한 질문응답시스템은 한글 자연어로 된 텍스트와 질문을 자동으로 처리하는 지능형 정보시스템이다. 입력데이타는 스포츠관계 기사로 국한하였으며 프로그래밍 언어로는 코볼을 사용하였다. 이 시스템의 구문분석기는 격문법에 기초한 것으로서 어휘사전, 용언의 격프레임, 언어학적 규칙 등을 사용하여 문장을 분석한다. 본문검색과 사실검색이 모두 가능한 이 시스템에서는 질문에 대한 해답이 문장형태이거나 사실데이타 형태로 출력된다.
텍스트에 임베디드 되어 있는 부가적인 정보를 이용하여 문서의 실제적인 의미단위인 텍스트를 분리하는 단락검색은 중요한 기술이다. 본 논문에서는 문서의 분야에 적합한 단락만을 분리하여 사용자의 요구에 적합한 단락을 추출하는 기술을 설명한다. 문서에서 분야연상어론 추출하여, 각 문장마다 화제의 분야가 어떻게 커져가고, 줄어들고, 변화하여 가는지를 측정하는 방법을 실험을 통해 설명한다. 긴 문서에서 어떤 화제가 출현하는가를 파악하고, 화제가 계속되거나 혹은 전환되는 지점을 측정하고, 분야별로 단락을 구분하는 방법을 계산한다. 12,500개의 한국어 신문기사를 이용하여 실험한 결과 $88{\%}$의 정확률과 $78{\%}$의 재현율을 얻을 수 있었다.
질의 응답 시스템에서 보다 정확하게 정답을 판별하기 위해서는 구문분석 혹은 의미분석 등과 같은 복잡도가 높은 분석작업이 요구되며, 이러한 질의 응답 시스템 성능의 상한을 결정하는 검색 시스템은 가급적 적은 양의 검색 결과를 내주어서 질의 응답 시스템이 처리해야 할 작업량에 대한 부담을 덜어주어야 한다. 본 논문에서는 이러한 요구를 만족시키는 검색 시스템으로 가변 길이 단락 검색 시스템(variable length passage retrieval system)을 제안한다. 제안하는 검색 시스템은 질의에 대한 정답을 포함하고 있을 가능성이 있는 텍스트 영역은 질의에 따라 그 크기가 다를 것이라는 가정으로부터 출발한다. 그러므로 문서 전체를 검색하거나 고정 길이 단락으로 나누어져 색인되어 있는 부분 문서들을 검색하는 기존의 검색 방법과 달리, 제안된 시스템은 문서에서 임의의 길이로 이루어진 단락을 대상으로 동적인 단락 검객을 수행한다. TREC QA track의 질의집합 중 1번부터 100번까지의 질의에 대해 실험을 수행한 견과, 문서 검색 시스템이나 고정 길이 단락 검색 시스템은 상위 1000개의 문장까지 검색을 하였을 때 각각 96%, 98%의 재현율을 보인 반면, 가변 길이 단락 검색 시스템은 800개의 문장만으로도 98%의 재현율을 보이고, 900개의 문장을 검색하였을 경우 100%의 재현율을 보였다.
문서 범주화 분야에 대한 연구들은 전체 문서 단위에 한정되어 왔으나, 오늘날 대부분의 전문들이 주요 주제를을 표현하기 위해서 조직화 된 특정 구조로 기술되고 있어, 텍스트 범주화에 대한 새로운 인식이 필요하게 되었다. 이러한 구조는 부주제(Sub-topic)의 텍스트 블록이나 문단(Passage) 단위의 나열로서 표현되는데, 이러한 구조 문서에 대한 부주제 구조를 반영하기 위해서 문단 단위(Passage-based) 문서 범주화 모델을 제안한다. 제안한 모델에서는 문서를 문단들로 분리하여 각각의 문단에 범주(Category)를 할당하고, 각 문단의 범주를 전체 문서의 범주로 병합하는 방법을 사용한다. 전형적인 문서 범주화와 비교할 때, 두 가지 부가적인 절차가 필요한데, 문단 분리와 문단 병합이 그것이다. 로이터(Reuter)의 4가지 하위 집합과 수십에서 수백 KB에 이르는 전문 테스트 컬렉션(KISTl-Theses)을 이용하여 실험하였는데, 다양한 문단 타입들의 효과와 범주 병합 과정에서의 문단 위치의 중요성에 초점을 맞추었다 실험한 결과 산술적(Window) 문단이 모든 테스트 컬렉션에 대해서 가장 좋은 성능을 보였다. 또한 문단은 문서 안의 위치에 따라 주요 주제에 기여하는 바가 다른 것으로 나타났다.
자연어 처리 분야는 최근에 큰 발전을 보였으며, 특히 초대규모 언어 모델의 등장은 이 분야에 큰 영향을 미쳤다. GPT와 같은 모델은 다양한 NLP 작업에서 높은 성능을 보이고 있으며, 특히 챗봇 분야에서 중요하게 다루어지고 있다. 하지만, 이러한 모델에도 여러 한계와 문제점이 있으며, 그 중 하나는 모델이 기대하지 않은 결과를 생성하는 것이다. 이를 해결하기 위한 다양한 방법 중, Retrieval-Augmented Generation(RAG) 방법이 주목받았다. 이 논문에서는 지식베이스와의 통합을 통한 도메인 특화형 질의응답 시스템의 효율성 개선 방안과 벡터 데이터 베이스의 수정을 통한 챗봇 답변 수정 및 업데이트 방안을 제안한다. 본 논문의 주요 기여는 다음과 같다: 1) QA Pair Passage RAG을 활용한 새로운 RAG 시스템 제안 및 성능 향상 분석 2) 기존의 LLM 및 RAG 시스템의 성능 측정 및 한계점 제시 3) RDBMS 기반의 벡터 검색 및 업데이트를 활용한 챗봇 제어 방법론 제안
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.