• 제목/요약/키워드: passage retrieval

검색결과 22건 처리시간 0.018초

효율적인 질의응답시스템 개발을 위한 BM25기반의 단락 검색 시스템 (A BM25 based Passage Retrieval System for Developing an Efficient Question and Answering System)

  • 임희석;이영신;임해창
    • 컴퓨터교육학회논문지
    • /
    • 제6권4호
    • /
    • pp.23-30
    • /
    • 2003
  • 본 논문은 문서 단위 보다 작은 단락 단위의 검색 시스템을 사용하는 효율적인 질의 응답 시스템 개발을 위하여 문서 검색에서 성능이 검증된 Okapi 시스템의 BM25 알고리즘을 응용한 단락 검색 시스템을 제안하고, 단락 검색 시스템의 성능을 분석하고자 한다. 100만 건의 문서로 구성된 TREC Q&A track 테스트 컬렉션을 색인에 사용하고 TREC Q&A track 질의 집합 중 1~100번까지의 질의를 사용하여 실험한 결과 재현율이 100%가 되기 위해서는 문서 검색은 약 12만 문장을 검색해야 하는 반면, 단락 검색에서는 문서 검색의 약 1/70인 1700문장만으로도 100%의 재현율을 얻을 수 있음을 확인하였다.

  • PDF

증강된 질문을 이용한 RoBERTa 기반 Dense Passage Retrieval (Dense Retrieval using Pretrained RoBERTa with Augmented Query)

  • 박준범;홍범석;최원석;한영섭;전병기;나승훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.141-145
    • /
    • 2022
  • 다중 문서 기반 대화 시스템에서 응답 시스템은 올바른 답변을 생성하기 위해서 여러 개의 문서 중 질문과 가장 관련 있는 문서를 검색하는 것부터 시작해야 한다. DialDoc 2022 Shared Task[1]를 비롯한 최근의 연구들은 대화 시스템의 문서 검색 과정을 위해 Dense Passage Retrieval(DPR)[2] 모델을 사용하고 있으며 검색기의 성능 개선을 위해 Re-ranking과 Hard negative sampling 같은 방법들이 연구되고 있다. 본 논문에서는 문서에 기반하는 대화 데이터의 양이 적거나 제한될 경우, 주어진 데이터를 효율적으로 활용해 보고자 검색기를 생성 모델을 이용하여 문서의 엔티티를 기반으로 질문을 생성하고 기존 데이터에 증강하는 방법을 제시했으며 실험의 결과로 MRR metric의 경우 0.96 ~ 1.56의 성능 향상을, R@1 metric의 경우 1.2 ~ 1.57의 성능 향상을 확인하였다.

  • PDF

분야연상어를 이용한 화제의 계속성과 전환성을 추적하는 단락분할 방법 (Passage Retrieval based on Tracing Topic Continuity and Transition by Using Field-Associated Term)

  • 이상곤
    • 정보처리학회논문지B
    • /
    • 제10B권1호
    • /
    • pp.57-66
    • /
    • 2003
  • 복수의 화제가 혼합되어 있는 문서에서 각 화제의 경계부분을 구분하여 결정하는 기술을 단락분할이라 한다. 이 기술은 정보검색의 분야에만 한정되지 않고 다양한 분야에서 중요한 역할을 담당할 기술이다. 잘 정의된 분야체계에 따라 구축된 분야연상어를 이용하여 단락분할을 시도한다. 분야연상어란 특정한 분야를 정확하게 연상할 수 있는 단어로서 잘 분류된 문서 컬렉션에서 구축할 수 있다. 이 분야연상어를 이용하여 문서를 관련된 분야별로 추출하여 의미기반 단락추출 방법을 제안한다. 화제의 계속성에 주목하여 분야연상어의 수준(범위)이나 연속출현성에 의해 계산된 계속도에 의해 화제의 실마리를 추적하고, 화제의 전환성을 고려한 방법을 제안한다. 문서 내 각 화제의 단락구분을 명확히 하여, 단락을 화제분야별로 추출하는 방법을 제안한다. 일본어 50문서를 실험한 결과 82%의 정확율과 63%의 재현율을 얻어 실용성을 기대할 수 있었고, 한국어에 적용하여도 좋을 것으로 예상한다.

계층적 검색 모델을 이용한 정답 문장 탐색 (Exploring Answer Sentences using Hierarchical Retrieval Models)

  • 최승호;전현규;김지윤;김봉수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.361-365
    • /
    • 2023
  • 오픈 도메인 질의응답 (ODQA, Open-Domain Question Answering)은 주어진 질문에 대한 답을 찾는 작업으로 일반적으로 질문과 관련 있는 지식을 검색 모델(Retrieval)을 통해 찾는 단계와, 찾은 지식에서 문서의 정답을 독해 모델(Reader)을 이용하여 찾는 단계로 구성되어 있다. 본 논문은 기존의 DPR(Dense Passage Retrieval)을 이용한 복수의 검색 모델(Retrieval)만을 계층적으로 사용하여 독해 모델(Reader)을 사용하지 않고 정답 문장을 찾는 방법과 정답 문장을 찾는 데 특화된 검색 모델 학습을 위한 유효한 성능 향상을 보이는 Hard Negative Sampling 기법을 제안한다. 해당 제안기법을 적용한 결과, 동일 조건에서 학습된 검색 - 독해(Retrieval-Reader) 구조의 베이스라인 모델보다 EM에서 12%, F1에서 10%의 성능 향상을 보였다.

  • PDF

질의확장에 의한 단락검색의 성능 향상에 관한 연구 (A Study on the Improvement of Retrieval Performance Query Expansion in Passage-based Retrieval)

  • 박지연;정영미
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 2001년도 제8회 학술대회 논문집
    • /
    • pp.143-148
    • /
    • 2001
  • 본 연구에서는 공기기반 질의-용어간 유사도를 이용한 질의확장을 통해 단락검색의 성능을 향상시키는 방안을 제시하고자 하였다 실험을 통해 전체 문헌집단에 출현한 용어들의 공기정보에 기반한 전역적 질의확장과 이용자의 피드백 없이 초기검색 결과 중 상위 10개 문헌에 출현한 용어들의 공기정보에 기반한 지역적 질의확장의 성능을 비교하고 각각의 성능을 향상시키는 방법을 모색하였다. 마지막으로 문헌집단의 전역 정보와 지역 정보를 함께 이용하는 방안을 제시하고 그 성능을 평가하였다.

  • PDF

우리말 신문기사 검색을 위한 질문응답시스템 구현에 관한 연구 (Design of a Korean Question-Answering System for News Item Retrieval)

  • 정영미
    • 정보관리학회지
    • /
    • 제4권1호
    • /
    • pp.3-23
    • /
    • 1987
  • 이 연구에서 구현한 질문응답시스템은 한글 자연어로 된 텍스트와 질문을 자동으로 처리하는 지능형 정보시스템이다. 입력데이타는 스포츠관계 기사로 국한하였으며 프로그래밍 언어로는 코볼을 사용하였다. 이 시스템의 구문분석기는 격문법에 기초한 것으로서 어휘사전, 용언의 격프레임, 언어학적 규칙 등을 사용하여 문장을 분석한다. 본문검색과 사실검색이 모두 가능한 이 시스템에서는 질문에 대한 해답이 문장형태이거나 사실데이타 형태로 출력된다.

  • PDF

분야연상어를 이용한 화제분야의 계산방법과 단락검색 (Passage Retrieval and Calculation Method of Topic Field by Using Field-Associated Terms)

  • 이상곤
    • 정보처리학회논문지B
    • /
    • 제12B권1호
    • /
    • pp.57-68
    • /
    • 2005
  • 텍스트에 임베디드 되어 있는 부가적인 정보를 이용하여 문서의 실제적인 의미단위인 텍스트를 분리하는 단락검색은 중요한 기술이다. 본 논문에서는 문서의 분야에 적합한 단락만을 분리하여 사용자의 요구에 적합한 단락을 추출하는 기술을 설명한다. 문서에서 분야연상어론 추출하여, 각 문장마다 화제의 분야가 어떻게 커져가고, 줄어들고, 변화하여 가는지를 측정하는 방법을 실험을 통해 설명한다. 긴 문서에서 어떤 화제가 출현하는가를 파악하고, 화제가 계속되거나 혹은 전환되는 지점을 측정하고, 분야별로 단락을 구분하는 방법을 계산한다. 12,500개의 한국어 신문기사를 이용하여 실험한 결과 $88{\%}$의 정확률과 $78{\%}$의 재현율을 얻을 수 있었다.

질의 응답 시스템을 위한 가변 길이 단락 검색 (Variable Length Passage Retrieval for Q&A System)

  • 이영신;황영숙;임해창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2002년도 제14회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.259-266
    • /
    • 2002
  • 질의 응답 시스템에서 보다 정확하게 정답을 판별하기 위해서는 구문분석 혹은 의미분석 등과 같은 복잡도가 높은 분석작업이 요구되며, 이러한 질의 응답 시스템 성능의 상한을 결정하는 검색 시스템은 가급적 적은 양의 검색 결과를 내주어서 질의 응답 시스템이 처리해야 할 작업량에 대한 부담을 덜어주어야 한다. 본 논문에서는 이러한 요구를 만족시키는 검색 시스템으로 가변 길이 단락 검색 시스템(variable length passage retrieval system)을 제안한다. 제안하는 검색 시스템은 질의에 대한 정답을 포함하고 있을 가능성이 있는 텍스트 영역은 질의에 따라 그 크기가 다를 것이라는 가정으로부터 출발한다. 그러므로 문서 전체를 검색하거나 고정 길이 단락으로 나누어져 색인되어 있는 부분 문서들을 검색하는 기존의 검색 방법과 달리, 제안된 시스템은 문서에서 임의의 길이로 이루어진 단락을 대상으로 동적인 단락 검객을 수행한다. TREC QA track의 질의집합 중 1번부터 100번까지의 질의에 대해 실험을 수행한 견과, 문서 검색 시스템이나 고정 길이 단락 검색 시스템은 상위 1000개의 문장까지 검색을 하였을 때 각각 96%, 98%의 재현율을 보인 반면, 가변 길이 단락 검색 시스템은 800개의 문장만으로도 98%의 재현율을 보이고, 900개의 문장을 검색하였을 경우 100%의 재현율을 보였다.

  • PDF

문단 단위 가중치 함수와 문단 타입을 이용한 문서 범주화 (Automatic Text Categorization Using Passage-based Weight Function and Passage Type)

  • 주원균;김진숙;최기석
    • 정보처리학회논문지B
    • /
    • 제12B권6호
    • /
    • pp.703-714
    • /
    • 2005
  • 문서 범주화 분야에 대한 연구들은 전체 문서 단위에 한정되어 왔으나, 오늘날 대부분의 전문들이 주요 주제를을 표현하기 위해서 조직화 된 특정 구조로 기술되고 있어, 텍스트 범주화에 대한 새로운 인식이 필요하게 되었다. 이러한 구조는 부주제(Sub-topic)의 텍스트 블록이나 문단(Passage) 단위의 나열로서 표현되는데, 이러한 구조 문서에 대한 부주제 구조를 반영하기 위해서 문단 단위(Passage-based) 문서 범주화 모델을 제안한다. 제안한 모델에서는 문서를 문단들로 분리하여 각각의 문단에 범주(Category)를 할당하고, 각 문단의 범주를 전체 문서의 범주로 병합하는 방법을 사용한다. 전형적인 문서 범주화와 비교할 때, 두 가지 부가적인 절차가 필요한데, 문단 분리와 문단 병합이 그것이다. 로이터(Reuter)의 4가지 하위 집합과 수십에서 수백 KB에 이르는 전문 테스트 컬렉션(KISTl-Theses)을 이용하여 실험하였는데, 다양한 문단 타입들의 효과와 범주 병합 과정에서의 문단 위치의 중요성에 초점을 맞추었다 실험한 결과 산술적(Window) 문단이 모든 테스트 컬렉션에 대해서 가장 좋은 성능을 보였다. 또한 문단은 문서 안의 위치에 따라 주요 주제에 기여하는 바가 다른 것으로 나타났다.

QA Pair Passage RAG 기반 LLM 한국어 챗봇 서비스 (QA Pair Passage RAG-based LLM Korean chatbot service)

  • 신중민;이재욱;김경민;이태민;안성민;박정배;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.683-689
    • /
    • 2023
  • 자연어 처리 분야는 최근에 큰 발전을 보였으며, 특히 초대규모 언어 모델의 등장은 이 분야에 큰 영향을 미쳤다. GPT와 같은 모델은 다양한 NLP 작업에서 높은 성능을 보이고 있으며, 특히 챗봇 분야에서 중요하게 다루어지고 있다. 하지만, 이러한 모델에도 여러 한계와 문제점이 있으며, 그 중 하나는 모델이 기대하지 않은 결과를 생성하는 것이다. 이를 해결하기 위한 다양한 방법 중, Retrieval-Augmented Generation(RAG) 방법이 주목받았다. 이 논문에서는 지식베이스와의 통합을 통한 도메인 특화형 질의응답 시스템의 효율성 개선 방안과 벡터 데이터 베이스의 수정을 통한 챗봇 답변 수정 및 업데이트 방안을 제안한다. 본 논문의 주요 기여는 다음과 같다: 1) QA Pair Passage RAG을 활용한 새로운 RAG 시스템 제안 및 성능 향상 분석 2) 기존의 LLM 및 RAG 시스템의 성능 측정 및 한계점 제시 3) RDBMS 기반의 벡터 검색 및 업데이트를 활용한 챗봇 제어 방법론 제안

  • PDF