• 제목/요약/키워드: particulate pollutant

검색결과 159건 처리시간 0.025초

Short-term Effects of Ambient Air Pollution on Emergency Department Visits for Asthma: An Assessment of Effect Modification by Prior Allergic Disease History

  • Noh, Juhwan;Sohn, Jungwoo;Cho, Jaelim;Cho, Seong-Kyung;Choi, Yoon Jung;Kim, Changsoo;Shin, Dong Chun
    • Journal of Preventive Medicine and Public Health
    • /
    • 제49권5호
    • /
    • pp.329-341
    • /
    • 2016
  • Objectives: The goal of this study was to investigate the short-term effect of ambient air pollution on emergency department (ED) visits in Seoul for asthma according to patients' prior history of allergic diseases. Methods: Data on ED visits from 2005 to 2009 were obtained from the Health Insurance Review and Assessment Service. To evaluate the risk of ED visits for asthma related to ambient air pollutants (carbon monoxide [CO], nitrogen dioxide [$NO_2$], ozone [$O_3$], sulfur dioxide [$SO_2$], and particulate matter with an aerodynamic diameter <$10{\mu}m$ [$PM_{10}$]), a generalized additive model with a Poisson distribution was used; a single-lag model and a cumulative-effect model (average concentration over the previous 1-7 days) were also explored. The percent increase and 95% confidence interval (CI) were calculated for each interquartile range (IQR) increment in the concentration of each air pollutant. Subgroup analyses were done by age, gender, the presence of allergic disease, and season. Results: A total of 33 751 asthma attack cases were observed during the study period. The strongest association was a 9.6% increase (95% CI, 6.9% to 12.3%) in the risk of ED visits for asthma per IQR increase in $O_3$ concentration. IQR changes in $NO_2$ and $PM_{10}$ concentrations were also significantly associated with ED visits in the cumulative lag 7 model. Among patients with a prior history of allergic rhinitis or atopic dermatitis, the risk of ED visits for asthma per IQR increase in $PM_{10}$ concentration was higher (3.9%; 95% CI, 1.2% to 6.7%) than in patients with no such history. Conclusions: Ambient air pollutants were positively associated with ED visits for asthma, especially among subjects with a prior history of allergic rhinitis or atopic dermatitis.

Spatial-temporal Assessment and Mapping of the Air Quality and Noise Pollution in a Sub-area Local Environment inside the Center of a Latin American Megacity: Universidad Nacional de Colombia - Bogotá Campus

  • Fredy Alejandro, Guevara Luna;Marco Andres, Guevara Luna;Nestor Yezid, Rojas Roa
    • Asian Journal of Atmospheric Environment
    • /
    • 제12권3호
    • /
    • pp.232-243
    • /
    • 2018
  • The construction, development and maintenance of an economically, environmentally and socially sustainable campus involves the integration of measuring tools and technical information that invites and encourages the community to know the actual state to generate positive actions for reducing the negative impacts over the local environment. At the Universidad Nacional de Colombia - Campus $Bogot{\acute{a}}$, a public area with daily traffic of more than 25000 people, the Environmental Management Bureau has committed with the monitoring of the noise pollution and air quality, as support to the campaigns aiming to reduce the pollutant emissions associated to the student's activities and campus operation. The target of this study is based in the implementation of mobile air quality and sonometry monitoring equipment, the mapping of the actual air quality and noise pollution inside the university campus as a novel methodology for a sub-area inside a megacity. This results and mapping are proposed as planning tool for the institution administrative sections. A mobile Kunak$^{(R)}$ Air & OPC air monitoring station with the capability to measure particulate matter $PM_{10}$, $PM_{2.5}$, Ozone ($O_3$), Sulfur Oxide ($SO_2$), Carbon Monoxide (CO) and Nitrogen Oxide ($NO_2$) as well as Temperature, Relative Humidity and Latitude and Longitude coordinates for the data georeferenciation; and a sonometer Cirrus$^{(R)}$ 162B Class 2 were used to perform the measurements. The measurements took place in conditions of academic activity and without it, with the aim of identify the impacts generated by the campus operation. Using the free code geographical information software QGIS$^{(R)}$ 2.18, the maps of each variable measured were developed, and the impacts generated by the operation of the campus were identified qualitative and quantitively. For the measured variables, an increase of around 21% for the $L_{Aeq}$ noise level and around 80% to 90% for air pollution were detected during the operation period.

대표적인 열분해가스화 용융시설의 공정별 다이옥신 배출거동에 관한 연구 (A study on the Dioxin behavior in the process of representative pyrolysis/gasfication/melting plant)

  • 신찬기;신대윤
    • 환경위생공학
    • /
    • 제22권1호
    • /
    • pp.1-16
    • /
    • 2007
  • The incineration process has commonly used for wastes amount reduction and thermal treatments of pollutants as the technologies accumulated. However, the process is getting negative public images owing to matter of hazardous pollutants emission. Specially dioxins became a main issue and is mostly emitted from municipal solid wastes incineration. In this reason, pyrolysis/gasfication/melting process is presented as a alternative of incineration process. The pyrolysis/gasfication/melting process, a novel technology, is middle of verification of commercial plant and development of technologies in Korea. But the survey about the pollutant emission from the process, and background data in these facilities is necessary. So in this survey, it Is investigated that the behavior of dioxins in three pyrolysis/gasfication/melting plant (S, T, P) of pilot scale. In case of S plant, concentration of dioxins shows high at latter part of cogenerated boiler and stack which are operate on low temperature conditions than a latter parts of pyrolysis and melting furnace which are operate on high temperature condition. Concentration of gas phage dioxins had increased after combusted gas passed cogenerated boiler and this is attributed to react of precursor materials such as chlorobenzene and chlorophenol. Concentration of dioxins in T plant showed lower levels at latter part of cooling equipment which are operate with water spray type on low temperature conditions than a latter parts of gasfied melting furnace which are operate on high temperature condition. Removal efficiency of dioxins at gas treatment equipment was 78.8 %. Concentration of dioxins in P plant was low at latter part of SDA/BF which is operate at low temperature conditions than a latter parts of pyrolysis gasfied chamber which are operate at high temperature condition. Removal efficiency of dioxins of SDA/BF was 85.9 % and therefore, it showed high efficiency at those of stoker type incineration facility. However, concentration of dioxins which emitted at high temperature condition were low in three facilities and satisfied present standard emission level of dioxins. To consider the distribution ratio of dioxins, Particulate phase dioxins at S and P plants showed similar ratio with which shows in current stoker type for middle scale domestic waste incineration facility. It is necessary to continuos monitoring the ratio of distribution of dioxins in T plant in because ratio of gas phage dioxins showed high.

평택지역 대기 중 먼지 입경별 잔류성유기오염물질 분포특성 연구 (Distribution of Persistent Organic Pollutants (POPs) in Different Sizes of Particles in the Ambient Air of the Pyeongteak Area)

  • 김동기;우정식;김용준;정해은;박주은;조덕희;문희천;오조교
    • 한국환경보건학회지
    • /
    • 제46권2호
    • /
    • pp.192-203
    • /
    • 2020
  • Objectives: The concentration distributions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), dioxin-like polychlorinated biphenlys (dl-PCBs), and polycyclic aromatic hydrocarbons (PAHs) in fine particles were investigated to provide basic data on POP behavior and composition analysis. Methods: The concentrations of PCDD/Fs, dl-PCBs, and PAHs by particle size were evaluated for TSP, PM10, and PM2.5. Also, fine dust component analysis and factor analysis were performed to identify the source of PCDD/Fs. Results: The particle size distribution was found to account for 24.3% of >10 ㎛, 14.5% of 2.5-10 ㎛, and 61.2% of <2.5 ㎛. The average contributions of coarse particles (>2.5 ㎛) and fine particles (<2.5 ㎛) were PCDD/Fs 67%, dl-PCBs 66%, benzo (a) pyrene 83% and PAHs 84%, and the contributions of fine particles (<2.5 ㎛) were higher than coarse particles (>2.5 ㎛). However, the contributions of coarse particles increased in April to September with higher temperatures, while those of fine particles increased in February to March with lower temperatures. Conclusions: Low chlorinated (4Cl-5Cl) PCDD/Fs were more adsorbed compared to coarse particles due to the influence of pollutant migration from particulate to gas phase according to temperature rise, whereas high chlorinated (6Cl-8Cl) PCDD/Fs were more adsorbed compared to fine particles. PCDD/Fs sources were assessed to be major sources of emissions, such as incineration facilities and/or open burning.

Air Pollution Trends in Japan between 1970 and 2012 and Impact of Urban Air Pollution Countermeasures

  • Wakamatsu, Shinji;Morikawa, Tazuko;Ito, Akiyoshi
    • Asian Journal of Atmospheric Environment
    • /
    • 제7권4호
    • /
    • pp.177-190
    • /
    • 2013
  • Air pollution trends in Japan between 1970 and 2012 were analyzed, and the impact of air pollution countermeasures was evaluated. Concentrations of CO decreased from 1970 to 2012, and in 2012, the Japanese environmental quality standard (EQS) for CO was satisfied. Concentrations of $SO_2$ dropped markedly in the 1970s, owing to use of desulfurization technologies and low-sulfur heavy oil. Major reductions in the sulfur content of diesel fuel in the 1990s resulted in further decreases of $SO_2$ levels. In 2012, the EQS for $SO_2$ was satisfied at most air quality monitoring stations. Concentrations of $NO_2$ decreased from 1970 to 1985, but increased from 1985 to 1995. After 1995, $NO_2$ concentrations decreased, especially after 2006. In 2012, the EQS for $NO_2$ was satisfied at most air quality monitoring stations, except those alongside roads. The annual mean for the daily maximum concentrations of photochemical oxidants (OX) increased from 1980 to 2010, but after 2006, the $98^{th}$ percentile values of the OX concentrations decreased. In 2012, the EQS for OX was not satisfied at most air quality monitoring stations. Non-methane hydrocarbon (NMHC) concentrations generally decreased from 1976 to 2012. In 2011, NMHC concentrations near roads and in the general environment were nearly the same. The concentration of suspended particulate matter (SPM) generally decreased. In 2011, the EQS for SPM was satisfied at 69.2% of ambient air monitoring stations, and 72.9% of roadside air-monitoring stations. Impacts from mineral dust from continental Asia were especially pronounced in the western part of Japan in spring, and year-round variation was large. The concentration of $PM_{2.5}$ generally decreased, but the EQS for $PM_{2.5}$ is still not satisfied. The air pollution trends were closely synchronized with promulgation of regulations designed to limit pollutant emissions. Trans-boundary OX and $PM_{2.5}$ has become a big issue which contains global warming chemical species such as ozone and black carbon (so called SLCP: Short Lived Climate Pollutants). Cobeneficial reduction approach for these pollutants will be important to improve both in regional and global atmospheric environmental conditions.

Source Proximity and Meteorological Effects on Residential Ambient Concentrations of PM2.5, Organic Carbon, Elemental Carbon, and p-PAHs in Houston and Los Angeles, USA

  • Kwon, Jaymin;Weisel, Clifford P.;Morandi, Maria T.;Stock, Thomas H.;Turpin, Barbara
    • 한국환경과학회지
    • /
    • 제25권10호
    • /
    • pp.1349-1368
    • /
    • 2016
  • Concentrations of fine particulate matter ($PM_{2.5}$) and several of its particle constituents measured outside homes in Houston, Texas, and Los Angeles, California, were characterized using multiple regression analysis with proximity to point and mobile sources and meteorological factors as the independent variables. $PM_{2.5}$ mass and the concentrations of organic carbon (OC), elemental carbon (EC), benzo-[a]-pyrene (BaP), perylene (Per), benzo-[g,h,i]-perylene (BghiP), and coronene (Cor) were examined. Negative associations of wind speed with concentrations demonstrated the effect of dilution by high wind speed. Atmospheric stability increase was associated with concentration increase. Petrochemical source proximity was included in the EC model in Houston. Area source proximity was not selected for any of the $PM_{2.5}$ constituents' regression models. When the median values of the meteorological factors were used and the proximity to sources varied, the air concentrations calculated using the models for the eleven $PM_{2.5}$ constituents outside the homes closest to influential highways were 1.5-15.8 fold higher than those outside homes furthest from the highway emission sources. When the median distance to the sources was used in the models, the concentrations of the $PM_{2.5}$ constituents varied 2 to 82 fold, as the meteorological conditions varied over the observed range. We found different relationships between the two urban areas, illustrating the unique nature of urban sources and suggesting that localized sources need to be evaluated carefully to understand their potential contributions to $PM_{2.5}$ mass and its particle constituents concentrations near residences, which influence baseline indoor air concentrations and personal exposures. The results of this study could assist in the appropriate design of monitoring networks for community-level sampling and help improve the accuracy of exposure models linking emission sources with estimated pollutant concentrations at the residential level.

광주광역시 대기오염측정소 주변 교통량이 대기질에 미치는 영향 (The Effect of Traffic Volume on the Air Quality at Monitoring Sites in Gwangju)

  • 이대행;안상수;송형명;박옥현;박강수;서광엽;조영관;김은선
    • 한국환경보건학회지
    • /
    • 제40권3호
    • /
    • pp.204-214
    • /
    • 2014
  • Objectives: Vehicular emissions are one of the main sources of air pollution in urban areas. Correlation analysis was conducted between air pollutants and traffic volume in order to identify causes of air pollution in Gwangju. Methods: Using traffic volumes and air quality monitoring data from 2002 to 2012 from nine stations (seven urban areas, two roadside areas), especially at three sites where traffic volumes were high, the correlation coefficients were obtained between air pollutants as PM-10 (particulate matter), $NO_2$, $SO_2$, CO and $O_3$ at the stations and traffic volumes near the air monitoring stations. Results: Due to traffic volume and distance between the station and the traffic road, concentrations of pollutants at roadside areas were higher than at urban areas, with the exception of $O_3$. The concentration of $O_3$ showed statistically significance with those of other gas materials as $NO_2$, $SO_2$, and CO in winter (p<0.001) and spring (p<0.05). During the period of October 7 to 20, 2012, excluding periods of yellow dust, smog and rainy season, the ratio of $NO/(NO+NO_2)$ showed the highest value 0.57 and 0.40 at Unam and Chipyeong of two roadside stations, followed by 0.35 at Nongseong with vehicular effects. The correlation coefficient between traffic volume and $O_3$, CO, $NO_2$ became higher when the data on mist and haze days were excluded, than when all hourly data were used in that period, at the three sites of Unam, Chipyeong, and Nongseong. Conclusions: Air quality showed a considerable effect from vehicles at roadside areas compared to in urban areas. Air pollutant diminishment strategies need to be aggressively adopted in order to protect atmospheric environment.

국내 중소 도시지역 강우유출수의 유출특성 (Runoff Characteristics of Stormwater in Small City Urban Area)

  • 이홍신;이승환
    • 대한환경공학회지
    • /
    • 제31권3호
    • /
    • pp.193-202
    • /
    • 2009
  • 본 연구는 국내 중소 도시지역에서 강우 시 발생하는 강우유출수의 유출경향을 분석하고 초기강우기준을 산정하기 위하여 수행되었다. 연구지역은 국가산업단지가 소속되어 있는 구미시 원평동의 주거지역으로 선정 되었으며 모니터링 기간은 3개월에 걸쳐 시행되었다. 연구지역의 유역면적은 24.9 ha이고, 토지이용형태는 주거지역으로 대상유역의 80%가 불투수 면적(포장의 형태: 아스팔트)인 것으로 나타났다. 모니터링은 총 6회의 강우사상에 대하여 실시하였으며 모든 수질항목에 대해 EMC (Event Mean Concentration)와 SMC (Site Mean Concentration)를 산정하였다. 또한 강우지속시간에 따른 입경크기분포의 변화와 초기세척 현상을 관찰하였는데, 입경크기분포는 10%입경($D_{0.1}$), 50%입경($D_{0.5}$, 90%입경($D_{0.9}$이 각각 9.82 ${\mu}m$, 38.99 ${\mu}m$, 159.61 ${\mu}m$로 나타났고, 초기세척 현상은 용존성 물질보다 입자성 물질이 더 강하게 나타났다. $MFF_n$ (Mass first flush)을 이용하여 초기강우기준을 검토한 결과 초기우수유출수의 부피 30%에 오염물질부하량의 부피 44.4~58.5%를 포함하고 있는 것으로 나타났다. $MFF_n$과 입경크기분포는 자연형, 장치형 시설과 같은 다양한 비점오염저감시설의 설계 및 운전과 초기강우기준 결정을 위한 정보를 제공할 수 있을 것으로 기대된다.

황화수소(H2S) 흡착을 위한 금속산화물 기반 흡착제의 활성물질 최적화 및 입상형 흡착제 제조에 대한 연구 (A Study on the Optimization of Active Material and Preparation of Granular Adsorbent of Metal Oxide-based Adsorbent for Adsorption of Hydrogen Sulfide (H2S))

  • 최성열;한동희;김성수
    • 공업화학
    • /
    • 제30권4호
    • /
    • pp.460-465
    • /
    • 2019
  • 본 연구에서는 각종 산업시설에서 발생하는 $H_2S$를 처리하기 위하여 금속산화물 기반의 흡착제의 활성물질 최적화 및 입상형 흡착제 제조에 관한 연구를 진행하였다. 적용되는 흡착제는 금속산화물 중 높은 물리화학적 안정성과 비교적 큰 비표면적을 가지는 $TiO_2$를 이용하여 활성물질의 종류와 함량을 다르게 제조하였다. 이러한 흡착제의 물리화학적 특성과 흡착성능과의 상관관계를 확인한 결과 활성금속 중 대표적인 알칼리 물질인 KI를 첨착한 흡착제의 흡착성능이 가장 우수하였으며, 함량과 흡착성능의 관계는 비례하지 않고 volcano plot을 나타냈다. XRD, SEM, BET 분석을 통해 특정 함량 이상부터 활성물질이 표면에 노출됨을 확인하였으며, 비표면적은 $40{\sim}100m^2/g$, 기공의 부피는 $0.1{\sim}0.3cm^3/g$의 기공 특성을 가질 때 흡착성능이 가장 우수한 것으로 판단하였다. 실 공정 적용을 위해 흡착제를 입상형으로 성형 또는 세라믹 지지체에 코팅을 진행하였으며, 성형보다는 세라믹 지지체에 흡착제를 코팅하였을 때 우수한 흡착성능을 나타내는 것으로 확인하였다.

신개발 심층시비장치를 이용한 심층시비의 밭작물 재배 효과 (Understanding the Effects of Deep Fertilization on Upland Crop Cultivation and Ammonia Emissions using a Newly Developed Deep Fertilization Device)

  • 홍성창;김민욱;김진호;박성직
    • 한국환경농학회지
    • /
    • 제42권1호
    • /
    • pp.28-34
    • /
    • 2023
  • Nitrogen fertilizers applied to agricultural lands for crop cultivation can be volatilized as ammonia. The released ammonia can catalyze the formation of ultrafine dust (particulate matter, PM2.5), classified as a short-lived climate change pollutant, in the atmosphere. Currently, one of the prominent methods for fertilizer application in agricultural lands is soil surface application, which comprises spraying the fertilizers onto the soil surface, followed by mixing the fertilizers with the soil. Owing to the low nitrogen absorption rate of crops, when nitrogen fertilizers are applied in this manner, they can be lost from land surfaces through volatilization. Therefore, investigating a new fertilization method to reduce ammonia emissions and increase the fertilizer utilization efficiency of crops is necessary. In this study, to develop a method for reducing ammonia emissions from nitrogen fertilizers applied to soil surfaces, deep fertilization was conducted using a newly developed deep fertilization device, and ammonia emissions from barley, garlic, and onion fields were examined. Conventional fertilization (surface application) and deep fertilization (soil depth of 25 cm) were conducted for analysis. The fertilization rate was 100% of the standard fertilization rate used for barley, and deep fertilization of N, P, and K fertilizers was implemented. Ammonia emissions were collected using a wind tunnel chamber, and quantified subsequently susing the indole-phenol blue method. Ammonia emissions released from the basal fertilizer application persisted for approximately 58 d, beginning from approximately 3 d after fertilization in conventional treatments; however, ammonia was not released from deep fertilization. Moreover, barley, garlic, and onion yields were higher in the deep fertilization treatment than in the conventional fertilization treatment. In conclusion, a new fertilization method was identified as an alternative to the current approach of spraying fertilizers on the soil surface. This new method, which involves injecting nitrogen fertilizers at a soil depth of 25 cm, has the potential to reduce ammonia emissions and increase the yields of barley, garlic, and onion.