• Title/Summary/Keyword: particle velocities

Search Result 268, Processing Time 0.03 seconds

Heat Transfer in Radiatively Participating Gas-Particle Cavity Flows (輻射가 關與하는 氣體-固體粒子 캐비티 流動에서의 熱傳達)

  • 이종욱;이준식;이택식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.551-560
    • /
    • 1988
  • Gas-particle two phase flow and heat transfer in a cavity receiving thermal radiation through selectively transparent walls have been analyzed by a finite difference method. Particles injected from the upper hole of the cavity are accelerated downward by gravity and exit through the lower hole while they absorb, emit and scatter the incident thermal radiation. Gas phase is heated through convection heat transfer from particles, and consequently buoyancy induced flow field is formed. Two-equation model with two-way coupling is adopted and interaction terms are treated as sources by PSI-Cell method. For the particulate phase, Lagrangian method is employed to describe velocities and temperatures of particles. As thermal radiation is incident upon horizontally, radiative heat transfer in the vertical direction is assumed negligible and two-flux model is used for the solution of radiative heat flus. Gas phase velocity and temperature distributions, and particle trajectories, velocities and temperatures are presented. The effects of particle inlet condition, particle size, injection velocity and particle mass rate are mainly investigated.

Solar Wind Observations Using STELab-IPS Array In Japan

  • Fujiki, Ken'ichi;Tokumaru, Munetoshi;Iju, Tomoya;Hirota, Maria;Noda, Momotaro;Kojima, Masayoshi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.93.1-93.1
    • /
    • 2011
  • Radio wave from a compact radio source such as a quasar are scattered by irregularities of electron density. The scattered waves interfere with each other as they propagate to the Earth producing diffraction patterns on the ground. This phenomenon is called interplanetary scintillation (IPS). The IPS pattern contains the information of solar wind velocities and density fluctuations passing across a line-of-sight (LOS) from an observer to a radio source. The IPS is a useful tool which allows us to measure the solar wind in three dimensional space inaccessible to in situ observations. Although the IPS measurement is an integral of solar wind velocities and density fluctuations along the LOS, which causes degradation of accuracy, we have succeeded to develop computer assisted tomography (CAT) analysis to remove the effect of LOS integration. These techniques greatly improved the accuracy of determinations of solar wind velocity structures. In this talk we present our IPS observation system and long-term variation of global solar wind structures from 1980-2009, then we focus on recent peculiar solar wind properties.

  • PDF

Elastic Wave Characteristics in Cemented Engineered Soils (고결된 Engineered Soils의 탄성파 특성)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Lee, Woo-Jin;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.2
    • /
    • pp.87-97
    • /
    • 2008
  • Behaviors of cemented engineered soils, composed of rigid sand particle and soft rubber particle, are investigated under $K_o$ condition. The uncemented and cemented specimens are prepared with various sand volume fractions to estimate the effect of the cementation in mixtures. The vertical deformation and elastic wave velocities with vertical stress are measured. The bender elements and PZT sensors are used to measure elastic wave velocities. After cementation, the slope of vertical strain shows bilinear and is similar to that of uncemented specimen after decementation. Normalized vertical strains can be divided into capillary force, cementation, and decementation region. The first deflection of the shear wave in near field matches the first arrival of the primary wave. The elastic wave velocities dramatically increase due to cementation hardening under the fixed vertical stress, and are almost identical with additional stress. After decementation, the elastic wave velocities increase with increase in the vertical stress. The effect of cementation hinders the typical rubber-like, sand-like, and transition behaviors observed in uncemented specimens. Different mechanism can be expected in decementation of the rigid-soft particle mixtures due to the sand fraction. a shape change of individual particles in low sand fraction specimens; a fabric change between particles in high sand fraction specimens. This study suggests that behaviors of cemented engineered soils, composed of rigid-soft particles, are distinguished due to the cementation and decementation from those of uncemented specimens.

Measurements of Droplet Sizes and Velocities with Optimum Probability Density Function in a Transient Liquefied Butane Spray (액상부탄 간헐분무의 액적 크기 및 속도 측정과 최적 확률분포 연구)

  • Kim, J.H.;Kim, J.W.;Koo, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.5 no.1
    • /
    • pp.30-40
    • /
    • 2000
  • The characteristics of liquefied butane spray are expected to be different from conventional diesel fuel spray, because a kind of flash boiling spray is expected when the back pressure is below the saturated vapor pressure of the butane(0.23MPa at 298K). The ambient pressure was held at a pressure above(0.37MPa) and below(0.15MPa) the fuel vapor pressure. The axial velocities, radial velocities, and size distributions in butane sprays were measured with PDPA(Phase Doppler Particle Analyzer) system. The PDPA measurement showed a smaller SMD at the 0.15MPa chamber pressure, compared to the 0.37MPa case. Log-hyperbolic density function for the droplets size distribution can be fitted to the experimental results of a liquefied butane spray.

  • PDF

Lagrangian Investigation of Turbulent Channel Flow (I) - An Assessment of Particle Tracking Algorithms - (난류채널유동의 라그란지안 해석 (I)- 입자추적 알고리듬 평가 -)

  • Choi, Jung-Il;Lee, Chang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.859-866
    • /
    • 2003
  • The Lagrangian dispserion of fluid particles in inhomogeneous turbulence is investigated by a direct numerical simulation of turbulent channel flow. Fluid particle velocity and acceleration along a particle trajectory are computed by employing several interpolation schemes such as linear interpolation, high-order Lagrange polynomial interpolation and the Hermite interpolation schemes. The performances of the schemes are evaluated through comparison of errors in computed particle positions, velocities and accelerations against spectral interpolation. Adopting the four-point Hermite interpolation in the homogeneous directions and Chebyshev polynomials in the wall-normal direction appears to produce most reliable Lagrangian statistics including acceleration correlations with a reasonable amount of computational overhead.

Behavior of a Heavy Particle in the Shear Flow Near a Flat Wall (벽 근처 전단 유동 내의 입자의 운동)

  • Jeong Jae-Dal;Cho Seong-Gee;Lee Chang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.806-817
    • /
    • 2006
  • The motion of a small rigid particle in the shear flow near a stationary flat wall is investigated in the context of Stokes flow. The lift force proposed by Saffman and later modified by Mclaughlin and Mei is considered in the prediction of the particle motion far away from the wall. Later, the expression of the lift force is modified to take into account the effect of wall. In the analysis, gravity, lift and drag acting on a small rigid particle near the wall are taken into account. Both analytical and numerical results for the terminal velocities, distances from the wall and trajectories of the particle are presented. In addition, we extended the present analysis to turbulent near-wall flow in the vicinity of the wall.

The Characteristics of the Particle Position Along an Optical Axis in Particle Holography (입자 홀로그래피에서 입자의 광축 방향 위치 특성에 관한 연구)

  • Choo Yeon-Jun;Kang Bo-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.287-297
    • /
    • 2006
  • The Holographic Particle Velocimetry system can be a promising optical tool for the measurements of three dimensional particle velocities. One of inherent limitations of particle holography is the very long depth of field of particle images, which causes considerable difficulty in the determination of particle positions in the optical axis. In this study, we introduced three auto-focusing parameters corresponding to the size of particles, namely, Correlation Coefficient, Sharpness Index, and Depth Intensity to determine the focal plane of a particle along the optical axis. To investigate the suitability of the above parameters, the plane image of dot array screens containing different size of dots was recorded by diffused illumination holography and the positions of each dot in the optical axis were evaluated. In addition, the effect of particle position from the holographic film was examined by changing the distance of the screen from the holographic film. All measurement results verified that the evaluated positions using suggested auto-focusing parameters remain within acceptable range of errors. These research results may provide fundamental information for the development of the holographic velocimetry system based on the automatic image processing.

Numerical analysis of particle behavior around a bipolar charged electret fiber (정전 섬유필터 주위의 입자포집 및 거동에 관한 수치해석적 연구)

  • An, Gang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1509-1517
    • /
    • 1997
  • Charged and uncharged particle motions and collection characteristics around a bipolar charged rectangular shape electret fiber are studied numerically. Particle inertia, fluid drag, Coulomb force and polarization force are considered to predict the particle motion around the electret fiber. The effects of particle sizes, flow velocities, number of charges and polarities are also systematically investigated. For small size particles, the single fiber collection efficiency is greatly dependent on the charge polarity and the number of charges on a particle. However, particles larger than 5.mu.m do not show charging effect on collection efficiencies in the flow velocity ranges from 1.5 cm/s to 150 cm/s when the maximum charges are within +5 to -10. The results show that a strong electric field gradient at the corner of the bipolar charged fiber plays a very important role on collecting particles regardless of its charge polarity because of the polarization force. It also shows that the most penetrating particle size for a single electret fiber decreases as the flow velocity increases and the number of charges of a particle decreases.

Three-Dimensional Trajectory of a Fluid Particle in Air with Wind Effects and Air Resistance (공기 저항과 바람의 영향을 고려한 대기에서의 유체입자의 3차원 궤적)

  • 이동렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.797-808
    • /
    • 2001
  • Three-dimensional trajectory of fluid particle is simulated by a particle motion, which is able to examine the influences of changes in the several parameters. To calculate the trajectory of a particle, the Runge-Kutta method was utilized. The use of a projectile of particles for the trajectory of liquid jet has been shown to be useful to estimate the influence of different operating parameters such as best particle diameter, density of liquid body, initial take-off velocity, wind velocity, cross wind velocity, take-off angle, and base angle for a released flow from the nozzle. The results give the trajectories of various types of particle of body and at different elevations, base angles, wind velocities and densities of liquid body. The trajectories in a vacuum show that air resistances decreases both the distance and the maximum height of a projectile, and also explain that the termination time is also reduced in air. In addition, the maximum distance in the x direction was obtained with take-off angles from 30 degrees to 45 degrees in still air and the projectile of particles was highly effected by wind and cross wind. Clearly, a particle has to be so positioned as to take the optimum possible advantage of the wind if the maximum distances is requested. The wind astern increased the maximum distances of x direction compared with the wind ahead. Finally, it is possible to optimize the design of pump by using these results.

  • PDF

Effect of Secondary Flows on the Particle Collection Efficiency in Single Stage Electrostatic Precipitator (1단 전기 집진기에서 2차 유동이 집진 효율에 미치는 영향)

  • Lee, Jae-Bok;Bae, Gwi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.251-259
    • /
    • 2000
  • The ionic wind formed in a nonuniform electric field has been recognized to have a significant effect on particle collection in an electrostatic precipitator(ESP). Under normal operating conditions the effect of ionic wind is not pronounced. However, as the flow velocity becomes smaller, the ionic wind becomes pronounced and induces secondary flow, which has a significant influence on the flow field and the particle collecting efficiency. In this paper, experiments for investigating the effect of secondary flow on collection efficiencies were carried out by changing the flow velocities in 0.2-0.7m/s and the applied voltages in 9-11kV/cm. The particle size distributions and concentrations are measured by DMA and CNC. To analyze the experimental results, numerical analysis of electric filed in ESP was carried out. It shows that particle collection is influenced by two independent dimensionless numbers, $Re_{ehd}\;and\;Re_{flow}$ not by $N_{ehd}$ alone. When $Re_{flow}$, decreases for constant $Re_{ehd}$, the secondary flow prohibits the particle collection. But when $Re_{ehd}$ increases for constant $Re_{flow}$, it enhances the particle collection by driving the particles into the collection region.