• Title/Summary/Keyword: particle trapping

Search Result 41, Processing Time 0.025 seconds

A Study on Particle Displacement Distributions of Energy-trapped Piezoelectric Resonators and Filters Utilizing the Harmonic Modes (고차진동을 이용하는 에너지포획형 압전 공진자와 필터의 변위분포에 관한 연구)

  • 이개명
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.11
    • /
    • pp.954-962
    • /
    • 1998
  • Energy-trapped thickness vibrations of piezoelectric substrates are utilized in fabricating resonators and filters which have their operating frequencies in HF band. Normalized particle displacement distributions of the fundamental thickness shear vibration mode and overtone modes into the thickness direction in energy-trapped resonators and double-coupled filters were obtained by solving the wave equation and calculating the solved equations. These results show that as the number order of the harmonic mode in a energy-trapped resonator becomes larger, the degree of energy-trapping in the resonator increase, and if the conditions for energy-trapping become sufficiently weak, the energy-trapping effect of the harmonic mode which has the lower order disappears the earlier. Above simulation results were proved by the experiments.

  • PDF

Gallium nitride nanoparticle synthesis using nonthermal plasma with gallium vapor

  • You, K.H.;Kim, J.H.;You, S.J.;Lee, H.C.;Ruh, H.;Seong, D.J.
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1553-1557
    • /
    • 2018
  • Gallium nitride (GaN) nanoparticles are synthesized by the gallium particle trapping effect in a $N_2$ nonthermal plasma with metallic Ga vapor. A proposed method has an advantage of synthesized GaN nanoparticle purity because the gallium vapor from the inductively heated tungsten boat does not contain any impurity source. The synthesized particle size can be controlled by the amount of Ga vapor, which is adjusted using the plasma emission ratio of nitrogen to gallium, owing to the particle trapping effect. The synthesized nanoparticles are investigated by electron microscopy studies. High-resolution transmission electron microscopy (HRTEM) studies confirm that the synthesized GaN nanoparticles (10-40 nm) crystallize in a single-phase wurtzite structure. Room-temperature photoluminescence (PL) measurements indicate the band-edge emission of GaN at around 378 nm without yellow emission, which implies that the synthesized GaN nanoparticles have high crystallinity.

Synthesized Nanoparticle Trapping in Capacitively Coupled Plasma

  • Yu, Gwang-Ho;Kim, Jeong-Hyeong;Yu, Sin-Jae;Seong, Dae-Jin;Sin, Yong-Hyeon;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.578-578
    • /
    • 2013
  • We proposed a method for synthesized nanoparticle trapping in capacitively coupled plasma (CCP) reactor. The nanoparticle in nonthermal plasma can be negatively charged by a charged particle in plasma. Thus, it can be placed between sheath and bulk plasma with zero net force on nanoparticle. However, synthesized nanoparticle can be pumped out due to the neutral drag force when the large size of sheath thickness. We try to make a potential well using the sheath for trapping the synthesized nanoparticle.

  • PDF

Analysis of Particle Motion in Quadrupole Dielectrophoretic Trap with Emphasis on Its Dynamics Properties (사중극자 유전영동 트랩에서의 입자의 동특성에 관한 연구)

  • Chandrasekaran, Nichith;Yi, Eunhui;Park, Jae Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.10
    • /
    • pp.845-851
    • /
    • 2014
  • Dielectrophoresis (DEP) is defined as the motion of suspended particles in solvent resulting from polarization forces induced by an inhomogeneous electric field. DEP has been utilized for various biological applications such as trapping, sorting, separation of cells, viruses, nanoparticles. However, the analysis of DEP trapping has mostly employed the period-averaged ponderomotive forces while the dynamic features of DEP trapping have not been attracted because the target object is relatively large. Such approach is not appropriate for the nanoscale analysis in which the size of object is considerably small. In this study, we thoroughly investigate the dynamic response of trapping to various system parameters and its influence on the trapping stability. The effects of particle conductivity on its motion are also focused.

DETAILED EXAMINATION OF INVERSE-ANALYSIS PARAMETERS FOR PARTICLE TRAPPING IN SINGLE CHANNEL DIESEL PARTICULATE FILTER

  • Jung, S.C.;Park, J.S.;Yoon, W.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.165-177
    • /
    • 2007
  • Predictions of diesel particulate filtration are typically made by modeling of a particle collection, and providing particle trapping levels in terms of a pressure drop. In the present study, a series of single channel diesel particulate filter (DPF) experiments are conducted, the pressure traces are inversely analyzed and essential filtration parameters are deducted for model closure. A DPF filtration model is formulated with a non-linear description of soot cake regression. Dependence of soot cake porosity, packing density, permeability, and soot density in filter walls on convective-diffusive particle transportation is examined. Sensitivity analysis was conducted on model parameters, relevant to the mode of transition. Soot cake porosity and soot packing density show low degrees of dispersion with respect to the Peclet number and have asymptotes at 0.97 and $70\;kg/m^3$, respectively, at high Peclet number. Soot density in the filter wall, which is inversely proportional to filter wall Peclet number, controls the filtration mode transition but exerts no influence on termination pressure drop. The percolation constant greatly alters the extent of pressure drop, but is insensitive to volumetric flow rate or temperature of exhaust gas at fixed operation mode.

CFD Analysis of Trap Effect of Groove in Lubricating Systems: Part II - Variation in Radius of Curvature of Groove Edge (그루브의 Trap 효과에 대한 CFD 해석: 제2부 - 그루브 모서리의 곡률반경 변화)

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.359-364
    • /
    • 2020
  • Numerical investigation of the groove trap effect with variation in the groove-edge radius of curvature is presented here. The trap effect is evaluated in a two-dimensional sliding bearing using computational fluid dynamics (CFD). This simulation is based on the discrete phase model (DPM) and standard k - ε turbulence model using commercial CFD software, FLUENT. The numerical results are evaluated by comparisons with streamlines and particle trajectories in the grooves. Grooves are applied to various lubrication systems to improve their lubrication characteristics, such as load carrying capacity increment, leakage reduction, frictional loss reduction, and preventing three-body abrasive wear due to trapping effect. This study investigates the grove trapping effect for various groove-edge radius of curvature values and Reynolds numbers. The particle is assumed to be made of steel, with a circular shape, and is injected as a single particle in various positions. One-way coupling is used in the DPM model because the single particle injection condition is applied. Further, the "reflect" condition is applied to the wall boundary and "escape" condition is used for the "pressure inlet" and "pressure outlet" boundaries. From the numerical results, the groove edge radius is found to influence the groove trap effect. Moreover, the groove trap effect is more effective when applying the groove edge radius.

The Effect of Electrolyte Concentration for Colloid Adsorption toward a Fluid-Fluid Interface (유체 계면에서 콜로이드 흡착에 대한 전해질 농도의 영향)

  • Park, Bum Jun
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.527-530
    • /
    • 2013
  • I present the behavior of colloidal adsorption to an oil-water interface in the presence of electrolyte in an aqueous subphase. The optical laser tweezers and the piezo controller are used to trap an individual polystyrene microsphere in water and forcibly transfer it to the interface in the vertical direction. Addition of an electrolyte (i.e., NaCl) in the aqueous subphase enables the particle to attach to the interface, whereas the particle escapes from the trap without the adsorption in the absence of the electrolyte. Based on the analytical calculations of the optical trapping force and the electrostatic disjoining pressure between the particle and the oil-water interface, it is found that a critical energy barrier between them should exist. This study will provide a fundamental understanding for applications of colloidal particles as solid surfactants that can stabilize the immiscible fluid-fluid interfaces, such as emulsions (i.e., Pickering emulsions) and foams.

Optical Trapping of Microparticles Using a 790 nm Semiconductor Laser (790 nm의 반도체 레이저를 이용한 미세 입자의 포획)

  • 유석진;이진서;안지수;권남익
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.24-27
    • /
    • 1996
  • We describe the optical trapping of yeast particles of $3~4\mu\textrm{m}$ in water solution using a diode laser operating at 790 nm. The yeast particles are trapped by a laser focus and are moved in 2- or 3-dimensions. This confirms the concept of negative light pressure by the gradient force due to the difference of the index of refractions of solutions and particles. By moving yeast particle vertically to the laser beam axis, we measured the horizontal component of the trapping force and compared it with the laser power.

  • PDF

Preparation of Ceramic Foam Filter and Air Permeability (집진용 세라믹 필터의 제조 및 공기 투과 특성)

  • 박재구
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.4
    • /
    • pp.381-388
    • /
    • 2000
  • Ceramic foam prepared with cordierite as a starting material by foam method was tested to evaluate the feasibility as a filter for the dust collection in hot gas. Two different types of agents Benzethonium chloride (BZTC, C27H42NO2Cl) and Sodium Lauryl Sulfate(SLS, CH3(CH2)11OSO3Na) were used as foaming agents in foaming process. Porosityof ceramic foam was about 80% and mean pore size were 100${\mu}{\textrm}{m}$ for SLS agent and 200 ${\mu}{\textrm}{m}$ for BZTC. It was observed that ceramic foam was composed of continuous macro-pore structure with opening windows interconnecting macro-pores. The surface of ceramic foam support of was coated with cordierite particles ranged from 20${\mu}{\textrm}{m}$ to 50${\mu}{\textrm}{m}$ Meso-pore size in the coating layer on ceramic foam was below 10${\mu}{\textrm}{m}$. While air permeability of the support increased with increasing macro-pore size coated ceramic filters showed a constant permeability without regard to the macro-pore size of the support. The permeabuilities of support varied in the range of 600$\times$10-13m2 to 1000$\times$10-13m2. For the case of coated ceramic filter it was about 200$\times$10-13m2. As a result of particle trapping test by using fly ash the particle removal efficiency was over the 99.9%.

  • PDF

Fabrication and Experiment of Micro Particle Manipulator (미세 입자 조작 기구의 제작 및 실험)

  • Park, Jae-Hyoung;Kim, Yong-Kweon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.3
    • /
    • pp.136-143
    • /
    • 2001
  • A micro particle manipulator, which is devised for trapping particles at fixed positions by negative dielectrophoretic force (DEP force), has been fabricated and experimented. It is composed of square type electrode arrays fabricated by nickel electroplating with the height of 28 ${\mu}m$. To improve the quality of electroplated nickel electrodes, plating conditions have been optimized. Micro particles used in this study are polystyrene spheres and their to the specific position and trapped. The DEP force along the moving path of the particles has been estimated by the motion equation of a single particle. The displacement of a particle with an elapsed time was measured using a high-speed camera (1000 frames/sec). The velocity and acceleration of the particle were calculated from the measured data. The DEP force acting on the particle was estimated.

  • PDF