• Title/Summary/Keyword: particle swarm

Search Result 735, Processing Time 0.031 seconds

A Study on Acoustic Radiation Reduction of a Vibrating Panel by Using Particle Swarm Optimization Algorithm (군집행동 알고리즘을 이용한 판넬구조물의 방사소음저감에 관한 연구)

  • Jeon, Jin-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.482-490
    • /
    • 2009
  • In this paper, the author proposes a new method for acoustic radiation optimum design to minimize noise from a vibrating panel-like structure using a collaborative population-based search method called the particle swarm optimization algorithm(PSOA). The PSOA is a parallel evolutionary computation technique initially developed by Kennedy and Eberhart. The acoustic radiation optimization method based on the PSOA consists of two processes. In the first process, the acoustic radiation analysis by an integrated p-version FEM/BEM, which was developed by using MATLAB, is performed to evaluate the exterior acoustic radiation field of the panel. The second process is to search the optimum design variables: 1) Shape of Bezier curves and 2) Shape and position of ribs, to minimize noise from the panel using the PSOA. The optimization method based on the PSOA is compared to that based on the steady state genetic algorithm(SSGA) in order to verify the effectiveness and validity of the optimal solution by PSOA. Finally, it is shown that the optimal designs of the panel obtained by using the PSOA can achieve effective reductions in radiated sound power.

Optimization of FCM-based Radial Basis Function Neural Network Using Particle Swarm Optimization (PSO를 이용한 FCM 기반 RBF 뉴럴 네트워크의 최적화)

  • Choi, Jeoung-Nae;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2108-2116
    • /
    • 2008
  • The paper concerns Fuzzy C-Means clustering based Radial Basis Function neural networks (FCM-RBFNN) and the optimization of the network is carried out by means of Particle Swarm Optimization(PSO). FCM-RBFNN is the extended architecture of Radial Basis Function Neural Network(RBFNN). In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values directly rely on the computation of the relevant distance between data points by means of FCM. Also, as the consequent part of fuzzy rules extracted by the FCM - RBFNN model, the order of four types of polynomials can be considered such as constant, linear, quadratic and modified quadratic. Weighted Least Square Estimator(WLSE) are used to estimates the coefficients of polynomial. Since the performance of FCM-RBFNN is affected by some parameters of FCM-RBFNN such as a specific subset of input variables, fuzzification coefficient of FCM, the number of rules and the order of polynomials of consequent part of fuzzy rule, we need the structural as well as parametric optimization of the network. In this study, the PSO is exploited to carry out the structural as well as parametric optimization of FCM-RBFNN. Moreover The proposed model is demonstrated with the use of numerical example and gas furnace data set.

The Research of Optimal Plant Layout Optimization based on Particle Swarm Optimization for Ethylene Oxide Plant (PSO 최적화 기법을 이용한 Ethylene Oxide Plant 배치에 관한 연구)

  • Park, Pyung Jae;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.32-37
    • /
    • 2015
  • In the fields of plant layout optimization, the main goal is to minimize the construction cost including pipelines as satisfying all constraints such as safety and operating issues. However, what is the lacking of considerations in previous researches is to consider proper safety and maintenance spaces for a complex plant. Based on the mathematical programming, MILP(Mixed Integer Linear Programming) problems including various constraints can be formulated to find the optimal solution which is to achieve the best economic benefits. The objective function of this problem is the sum of piping cost, pumping cost and area cost. In general, many conventional optimization solvers are used to find a MILP problem. However, it is really hard to solve this problem due to complex inequality and equality constraints, since it is impossible to use the derivatives of objective functions and constraints. To resolve this problem, the PSO (Particle Swarm Optimization), which is one of the representative sampling approaches and does not need to use derivatives of equations, is employed to find the optimal solution considering various complex constraints in this study. The EO (Ethylene Oxide) plant is tested to verify the efficacy of the proposed method.

Improved Particle Swarm Optimization Algorithm for Adaptive Frequency-Tracking Control in Wireless Power Transfer Systems

  • Li, Yang;Liu, Liu;Zhang, Cheng;Yang, Qingxin;Li, Jianxiong;Zhang, Xian;Xue, Ming
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1470-1478
    • /
    • 2018
  • Recently, wireless power transfer (WPT) via coupled magnetic resonances has attracted a lot of attention owing to its long operation distance and high efficiency. However, the WPT systems is over-coupling and a frequency splitting phenomenon occurs when resonators are placed closely, which leads to a decrease in the transfer power. To solve this problem, an adaptive frequency tracking control (AFTC) was used based on a closed-loop control scheme. An improved particle swarm optimization (PSO) algorithm was proposed with the AFTC to track the maximum power point in real time. In addition, simulations were carried out. Finally, a WPT system with the AFTC was demonstrated to experimentally validate the improved PSO algorithm and its tracking performance in terms of optimal frequency.

Enhanced Particle Swarm Optimization for Short-Term Non-Convex Economic Scheduling of Hydrothermal Energy Systems

  • Jadoun, Vinay Kumar;Gupta, Nikhil;Niazi, K. R.;Swarnkar, Anil
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1940-1949
    • /
    • 2015
  • This paper presents an Enhanced Particle Swarm Optimization (EPSO) to solve short-term hydrothermal scheduling (STHS) problem with non-convex fuel cost function and a variety of operational constraints related to hydro and thermal units. The operators of the conventional PSO are dynamically controlled using exponential functions for better exploration and exploitation of the search space. The overall methodology efficiently regulates the velocity of particles during their flight and results in substantial improvement in the conventional PSO. The effectiveness of the proposed method has been tested for STHS of two standard test generating systems while considering several operational constraints like system power balance constraints, power generation limit constraints, reservoir storage volume limit constraints, water discharge rate limit constraints, water dynamic balance constraints, initial and end reservoir storage volume limit constraints, valve-point loading effect, etc. The application results show that the proposed EPSO method is capable to solve the hard combinatorial constraint optimization problems very efficiently.

The Use of Particle Swarm Optimization for Order Allocation Under Multiple Capacitated Sourcing and Quantity Discounts

  • Ting, Ching-Jung;Tsai, Chi-Yang;Yeh, Li-Wen
    • Industrial Engineering and Management Systems
    • /
    • v.6 no.2
    • /
    • pp.136-145
    • /
    • 2007
  • The selection of suppliers and the determination of order quantities to be placed with those suppliers are important decisions in a supply chain. In this research, a non-linear mixed integer programming model is presented to select suppliers and determine the order quantities. The model considers the purchasing cost which takes into account quantity discount, the cost of transportation, the fixed cost for establishing suppliers, the cost for holding inventory, and the cost of receiving poor quality parts. The capacity constraints for suppliers, quality and lead-time requirements for the parts are also taken into account in the model. Since the purchasing cost, which is a decreasing step function of order quantities, introduces discontinuities to the non-linear objective function, it is not easy to employ traditional optimization methods. Thus, a heuristic algorithm, called particle swarm optimization (PSO), is used to find the (near) optimal solution. However, PSO usually generates initial solutions randomly. To improve the PSO solution quality, a heuristic procedure is proposed to find an initial solution based on the average unit cost including transportation, purchasing, inventory, and poor quality part cost. The results show that PSO with the proposed initial solution heuristic provides better solutions than those with PSO algorithm only.

Optimal Design of Location Management Using Particle Swarm Optimization (파티클군집최적화 방법을 적용한 위치관리시스템 최적 설계)

  • Byeon, Ji-Hwan;Kim, Sung-Soo;Jang, Si-Hwan;Kim, Yeon-Soo
    • Korean Management Science Review
    • /
    • v.29 no.1
    • /
    • pp.143-152
    • /
    • 2012
  • Location area planning (LAP) problem is to partition the cellular/mobile network into location areas with the objective of minimizing the total cost in location management. The minimum cost has two components namely location update cost and searching cost. Location update cost is incurred when the user changes itself from one location area to another in the network. The searching cost incurred when a call arrives, the search is done only in the location area to find the user. Hence, it is important to find a compromise between the location update and paging operations such that the cost of mobile terminal location tracking cost is a minimum. The complete mobile network is divided into location areas. Each location area consists of a group of cells. This partitioning problem is a difficult combinatorial optimization problem. In this paper, we use particle swarm optimization (PSO) to obtain the best/optimal group of cells for 16, 36, 49, and 64 cells network. Experimental studies illustrate that PSO is more efficient and surpasses those of precious studies for these benchmarking problems.

Development of an Educational Simulator of Particle Swarm Optimization: Application to Economic Dispatch Problems (교육용 PSO 시뮬레이터의 개발: 경제급전에의 적용)

  • Lee, Woo-Nam;Jeong, Yun-Won;Lee, Joo-Won;Park, Jong-Bae;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.198-200
    • /
    • 2006
  • This paper presents a development of an educational simulator of particle swarm optimization (PSO) and application for solving the test functions and economic dispatch (ED) problems with nonsmooth cost functions. A particle swarm optimization is one of the most powerful methods for solving global optimization problems. It is a population-based search algorithm and searches in parallel using a group of particles similar to other AI-based heuristic optimization techniques. In developed simulator, lecturers and students can select the functions for simulation and set the parameters that have an influence on PSO performance. To improve searching capability for ED problems, a crossover operation is proposed to the position update of each individual (CR-PSO). To verify the feasibility of CR-PSO method, numerical studies have been performed for two different sample systems. The proposed CR-PSO method outperforms other algorithms in solving ED problems.

  • PDF

Parameter Identification of Robot Hand Tracking Model Using Optimization (최적화 기법을 이용한 로봇핸드 트래킹 모델의 파라미터 추정)

  • Lee, Jong-Kwang;Lee, Hyo-Jik;Yoon, Kwang-Ho;Park, Byung-Suk;Yoon, Ji-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.467-473
    • /
    • 2007
  • In this paper, we present a position-based robot hand tracking scheme where a pan-tilt camera is controlled such that a robot hand is always shown in the center of an image frame. We calculate the rotation angles of a pan-tilt camera by transforming the coordinate systems. In order to identify the model parameters, we applied two optimization techniques: a nonlinear least square optimizer and a particle swarm optimizer. From the simulation results, it is shown that the considered parameter identification problem is characterized by a highly multimodal landscape; thus, a global optimization technique such as a particle swarm optimization could be a promising tool to identify the model parameters of a robot hand tracking system, whereas the nonlinear least square optimizer often failed to find an optimal solution even when the initial candidate solutions were selected close to the true optimum.

Unified Detection and Tracking of Humans Using Gaussian Particle Swarm Optimization (가우시안 입자 군집 최적화를 이용한 사람의 통합된 검출 및 추적)

  • An, Sung-Tae;Kim, Jeong-Jung;Lee, Ju-Jang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.353-358
    • /
    • 2012
  • Human detection is a challenging task in many fields because it is difficult to detect humans due to their variable appearance and posture. Furthermore, it is also hard to track the detected human because of their dynamic and unpredictable behavior. The evaluation speed of method is also important as well as its accuracy. In this paper, we propose unified detection and tracking method for humans using Gaussian-PSO (Gaussian Particle Swarm Optimization) with the HOG (Histograms of Oriented Gradients) features to achieve a fast and accurate performance. Keeping the robustness of HOG features on human detection, we raise the process speed in detection and tracking so that it can be used for real-time applications. These advantages are given by a simple process which needs just one linear-SVM classifier with HOG features and Gaussian-PSO procedure for the both of detection and tracking.