• 제목/요약/키워드: particle size separation

Search Result 245, Processing Time 0.03 seconds

DEVELOPMENT AND TESTING OF MEDIUM CAPACITY GRAIN FLOUR SEPARATOR

  • Kachru, Rajinder-P
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.966-978
    • /
    • 1993
  • A power operated 90.5 hp electric motor) grain flour separator was designed and developed for separation of grain (wheat, corn, chickpea and soybean) flour into various fractions based on the size of the particles of the product. The separator agitating mechanism, feed control, cylindrical separator unit and an eccentric mechanism. The machine was tested for wheat ( variety ; Sujata) flour separation into four fractions, viz ; semolina, Gr-I and II, flour (coarse) and white (fine) flour. Wheat samples (6.8% m.c., db) were first pearled by CIAE pearler for 15.8% bran removal . The pearled wheat grains were then milled for semolina by a burre mill. The product and machine characteristics were determined at different capacities varying from 24 kg/h to 143 kg/h. It was found that 76 kg/h capacity gave reasonably best results in terms of purity and recovery of semolina vis-a-vis the market product. The energy requirement of the machine at no-load was found to be 230 W and at load c nditions, it varied between 36.3-6.4 KJ per kg of fead seperation. The macine could be used by small flour millers small/medium size traders and retailers and other processors for making available various flour products of different particle size in the market for ready use of the consumers.

  • PDF

Effects of Rice Straw Particle Size on Chewing Activity, Feed Intake, Rumen Fermentation and Digestion in Goats

  • Zhao, X.G.;Wang, M.;Tan, Z.L.;Tang, S.X.;Sun, Z.H.;Zhou, C.S.;Han, X.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.9
    • /
    • pp.1256-1266
    • /
    • 2009
  • Effects of particle size and physical effective fibre (peNDF) of rice straw in diets on chewing activities, feed intake, flow, site and extent of digestion and rumen fermentation in goats were investigated. A 4${\times}$4 Latin square design was employed using 4 mature Liuyang black goats fitted with permanent ruminal, duodenal, and terminal ileal fistulae. During each of the 4 periods, goats were offered 1 of 4 diets that were similar in nutritional content but varied in particle sizes and peNDF through alteration of the theoretical cut length of rice straw (10, 20, 40, and 80 mm, respectively). Dietary peNDF contents were determined using a sieve for particle separation above 8 mm, and were 17.4, 20.9, 22.5 and 25.4%, respectively. Results showed that increasing the particle size and peNDF significantly (p<0.05) increased the time spent on rumination and chewing activities, duodenal starch digestibility and ruminal pH, and decreased ruminal starch digestibility and $NH_{3}$-N concentration. Intake and total tract digestibility of nutrients (i.e. dry matter, organic matter, and starch) and ruminal fermentation were not affected by the dietary particle size and peNDF. Increased particle size and peNDF did not affect ruminal fibre digestibility, but had a great impact on the intestinal and total tract fibre digestibility. The study suggested that rice straw particle size or dietary peNDF was the important influential factor for chewing activity, intestinal fibre and starch digestibility, and ruminal pH, but had minimal impact on feed intake, duodenal and ileal flow, ruminal and total tract digestibility, and ruminal fermentation.

On the effect of void ratio and particle breakage on saturated hydraulic conductivity of tailing materials

  • Ma, Changkun;Zhang, Chao;Chen, Qinglin;Pan, Zhenkai;Ma, Lei
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.159-170
    • /
    • 2021
  • Particle size of tailings in different areas of dams varies due to sedimentation and separation. Saturated hydraulic conductivity of high-stacked talings materials are seriously affected by void ratio and particle breakage. Conjoined consolidation permeability tests were carried out using a self-developed high-stress permeability and consolidation apparatus. The hydraulic conductivity decreases nonlinearly with the increase of consolidation pressure. The seepage pattern of coarse-particle tailings is channel flow, and the seepage pattern of fine-particle tailings is scattered flow. The change rate of hydraulic conductivity of tailings with different particle sizes under high consolidation pressure tends to be identical. A hydraulic conductivity hysteresis is found in coarse-particle tailings. The hydraulic conductivity hysteresis is more obvious when the water head is lower. A new hydraulic conductivity-void ratio equation was derived by introducing the concept of effective void ratio and breakage index. The equation integrated the hydraulic conductivity equation with different particle sizes over a wide range of consolidation pressures.

Frit-Inlet Asymmetrical Flow Field-Flow Fractionation (FI-ARIFF): A Stopless Separation Technique for Macromlecules and Nanopariticles

  • Mun, Myeong Hui
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.4
    • /
    • pp.337-348
    • /
    • 2001
  • This article gives an overview of a recently developed channel system, frit-inlet asymmetrical flow field-flow fractionation (FI-AFlFFF), which can be applied for the separation of nanoparticles, proteins, and water soluble polymers. A conventiona l asymmetrical flow FFF channel has been modified into a frit-inlet asymmetrical type by introducing a small inlet frit near the injection point and the system operation of the FI-AFlFFF channel can be made with a great convenience. Since sample components injected into the FI-AFlFFF channel are hydrodynamically relaxed, sample injection and separation processes proceed without interruption of the migration flow. Therefore in FI-AFlFFF, there is no requirement for a valve operation to switch the direction of the migration flow that is normally achieved during the focusing/relaxation process in a conventional asymmetrical channel. In this report, principles of the hydrodynamic relaxation in FI-AFlFFF channel are described with equations to predict the retention time and to calculate the complicated flow variations in the developed channel. The retention and resolving power of FI-AFlFFF system are demonstrated with standard nanospheres and protreins. An attempt to elucidate the capability of FI-AFlFFF system for the separation and size characterization of nanoparticles is made with a fumed silica particle sample. In FI-AFlFFF, field programming can be easily applied to improve separation speed and resolution for a highly retaining component (very large MW) by using flow circulation method. Programmed FI-AFlFFF separations are demonstrated with polystyrene sulfonate standards and pululans and the dynamic separation range of molecular weight is successfully expanded.

Separation of micro-plastics from sea water using electromagnetic archimedes force

  • N. Nomura;F. Mishima;S. Nishijima
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.3
    • /
    • pp.18-21
    • /
    • 2023
  • Pollution of the environment by micro-plastics is now a worldwide problem. Plastics are difficult to decompose and put a great load on the marine environment. Especially a plastic with a size of 5 mm or less is defined as micro-plastic and are carried by ocean currents over long distances, causing global pollution. These are not easily decomposed in the natural environment. In this paper, we aimed to experimentally demonstrate that micro-plastics in seawater can be continuously separated by electromagnetic Archimedes force. Using polyethylene particles of 3 mm in diameter as the separation target, a flow channel was fabricated and separation conditions were investigated by particle trajectory calculations for separation experiments. Based on the calculation results, a solenoid-type superconducting magnet was used as a source of magnetic field to conduct separation experiments of micro-plastics in seawater. Although a high separation rate was assumed in the simulation results, the experimental results did not show any significant improvement in the separation rate due to the electromagnetic Archimedes force. It was found that the gas generated by the electrolytic reaction may have inhibited the migration of the particles.

Separation of Dark and Ordinary Muscle with Specific Gravity Controlled Sugar Solutions (당용액비중조절에 의한 보통육과 혈합육의 분리에 관한 연구)

  • KIM Woo-Jun;LEE Kang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.3
    • /
    • pp.185-190
    • /
    • 1982
  • In utilization of small size red muscled fishes like mackerel, sardine, and filefish, mechanical dressing is usually required. The removal of dark muscle is also necessary to improve qualify of the product, which could hardly be done by mechanical process. As a method of separating dark muscle, specific gravity method using sugar solution was investigated in this study. And the effects of the level of specific gravity, the size and density of meat particles, and stability of meat particle float on the separation of dark muscle were discussed. From the results, effective specific gravity, in case of sucrose solution, ranged 1.067 to 1.072 for mackerel, 1.062 to 1.070 for sardine, and 1.072 to 1.077 for filefish, respectively. The maximum separation of more than $90\%$ was obtained at specific gravity of 1.075, 1.070, and 1.075 in cases of mackerel, sardine and filefish, respectively. The size of meat particles which were ground with 0.2cm orifice plate was adequate to yield $90\%$ separation or above. The meat particle float in the glucose solution began to precipitate within 5 minutes after separation while 25 minutes in case of sucrose solution. Lipids were also fairly removed by the dark muscle separation process.

  • PDF

Development of Ceramic Composite Membranes for Gas Separation: I. Coating Characteristics of Nanoparticulate SiO2 Sols (기체분리용 세라믹 복합분리막의 개발: I. 극미세 입자 실리카 졸의 코팅 특성)

  • ;Marc A. Anderson
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.6
    • /
    • pp.496-504
    • /
    • 1992
  • Alumina tubes suitable for the support of gas separation membranes have been prepared by the slipcasting technique. These supports have the average pore size of 0.1 ${\mu}{\textrm}{m}$ within the narrow distribution. The sol-gel dipcoating process of nanoparticulate sols is very sensitive to microstructure of the support, and the coating on the inside surface of the tube is found to be more successful than on the outside surface. Nanoparticulate silica sols (0.82 mol/ι) have been synthesized by an interfacial hydrolysis reaction between TEOS and high alkaline water. When coating an alumina tube with these sols, the minimum limits of the particle size and the aging time required for forming the coated gel layer at the given pH are provided. It is optimum to coat the support with less concentrated sols stabilized through aging for the appropriate time (more than 22 days) at the lower pH (pH 2.0) for producing a reproducible crack free thin film coating in composite membranes.

  • PDF

Effects of ballasting Agent (Microsand) on Physical Floc Characteristics (세사 투입에 따라 형성된 플럭의 물리적 특성)

  • Ryu, Jae-Na;Lim, Yoon-Dae;Oh, Je-Ill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.5
    • /
    • pp.485-493
    • /
    • 2010
  • Chemical coagulation destabilizes colloidal particles so that particles grow to larger flocs. Solid particles are then removed by solid-liquid separation after typical precipitation. Rapid precipitation enhances the separation by reducing the precipitation time with larger and denser particles. Conventionally, polyelectolyte compounds (polymers) function as a flocculant aid by introducing a interparticle binding, which increases the particle size and density. And more recent ballasted flocculation adds a ballasting agent (microsand) to form denser particles with its high-density(sp gr=2.65). The current research was to evaluate the manner in which ballasted flocs are formed under different injection timings of microsand and to recognize the effects on floc formation. $FeCl_3$ as a coagulant, anionic polymer for a flocculation aid and microsand were used for the floc formation. Floc size (diameter) was widely ranged with the highest mean value when microsand was injected between $FeCl_3$ and polymer. Mean floc density was larger when the floc formed smaller. Settling velocity increased with larger floc size, whilst not significantly affected by the timing of microsand injection. The additional slow mixing on floc formation increased floc size to some extent.

Characterization of Asian dust using steric mode of sedimentation field-flow fractionation (Sd/StFFF) (Steric 모드의 침강장-흐름 분획법을 이용한 황사의 특성분석)

  • Eum, Chul Hun;Kim, Bon Kyung;Kang, Dong Young;Lee, Seungho
    • Analytical Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.476-482
    • /
    • 2012
  • Asian dust particles are known to have sizes ranging from a few nanometers up to about a few micrometers. The environmental and health effects depend on the size of the dust particles. The smaller, the farther they are transported, and the deeper they penetrate into the human respiratory system. Sedimentation field-flow fractionation (SdFFF) provides separation of nano to microparticles using a combination of centrifugal force and parabolic laminar flow in a channel. In this study, the steric mode of SdFFF (Sd/StFFF) was tested for size-based separation and characterization of Asian dust particles. Various SdFFF experimental parameters including flow rate, stop-flow time and field strength of the centrifugal field were optimized for the size analysis of Asian dust. The Sd/StFFF calibration curve showed a good linearity with $R^2$ value of 0.9983, and results showed an excellent capability of Sd/StFFF for a size-based separation of micron-sized particles.The optical microscopy (OM) was also used to study the size and the shape of the dust particles. The size distributions of the samples collected during a thick dust period were shifted towards larger sizes than those of the samples collected during thin dust periods. It was also observed that size distribution of the sample collected during dry period shifts further towards larger sizes than that of the samples collected during raining period, suggesting the sizes of the dust particle decrease during raining periods as the components adsorbed on the surface of the dust particles were removed by the rain water. Results show Sd/StFFFis a useful tool for size characterization of environmental particles such as the Asian dust.

Development of Ceramic Composite Membranes for Gas Separation: IV. Permeation Characteristics of ${\gamma}$-Alumina Membranes (기체분리용 세라믹 복합분리막의 개발 : IV. ${\gamma}$-알루미나 분리막의 투과 특성)

  • 현상훈;강범석;최두진
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.12
    • /
    • pp.970-980
    • /
    • 1992
  • ${\gamma}-alumina$ membranes were prepared by sol-gel dip coating or pressurized coating of boehmite sols on slipcasted ${\gamma}-alumina$ support tubes. The particle size of sols synthesized via the modified Yoldas-method could be controlled below 5 mn according to the mole ratio of nitric acid/aluminumtri-sec-butoxide (0.07~1.0). The reproducible crack-free composite membranes were produced by the 2nd dip coating or the pressurized coating technique using very stable sols with the particle size of 45 nm. Nitrogen gas permeability through the top-layer in the composite membrane was about $70~55{\times}10^{-7}\;mol/m^2{\cdot}s{\cdot}Pa$. The thermal stability of the top layer was proved to be good enough upto the heat-treatment temperature of $500^{\circ}C$.

  • PDF