• Title/Summary/Keyword: particle size separation

Search Result 245, Processing Time 0.023 seconds

Some theoretical and experimental aspects of a new electrodynamic separator

  • Kachru, Rajinder-P
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.979-983
    • /
    • 1993
  • A power operated (0.5 hp electric motor) grain flour separator was designed and developed for separation of grain (wheat, corn, chickpea and soybean) flour it no various fractions based on the size of the particles of the product. The separator is made of mild steel and consists of a hopper, power driven agitating mechanism, feed control , cylindrical separator unit and an eccentric mechanism. The machine was tested for wheat (variety : Subjata) flour separation into four fraction, viz : semolina ; Gr-I and II, flour (coarse) and white (fine) flour. Wheat samples (6.8% m.c., db) were first pearled by CIAE pearler for 15.8% bran removal . The product and machine characteristics were determined at different capacities varying from 24 kg/h to 143 kg/h. It was found that 76 kg/h capacity gave reasonably best results in terms of purity and recovery of semolina vis-a-vis the market product. The energy requirement of the machine at no-load was found to be 230 w and at load conditio s, it varied between 36.3-6.4kj per kg of feed separation. The machine could be used by small flour millers, small/medium size traders and retailers and other processors for making available various flour products of different particle size in the market for ready use fo the consumers.

  • PDF

Remediation of Heavy Metal-Contaminated Soil Within a Military Shooting Range through Physicochemical Treatment (물리화학적 처리를 이용한 군부대 사격장 내 중금속 오염 토양의 정화)

  • Lee, Sang-Woo;Lee, Woo-Chun;Lee, Sang-Hwan;Kim, Soon-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.5
    • /
    • pp.9-19
    • /
    • 2021
  • This study evaluated the feasibility of combined use of physical separation and soil washing to remediate heavy metals (Pb and Cu) contaminated soil in a military shooting range. The soils were classified into two types based on the level of heavy metal concentrations: a higher contaminated soil (HCS) with Pb and Cu concentrations of 6,243 mg/kg and 407 mg/kg, respectively, and a lower contaminated soil (LCS) with their concentrations of 1,658 mg/kg and 232 mg/kg. Pb level in both soils exceeded the regulatory limit (700 mg/kg), and its concentration generally increased with decreasing soil particle size. However, in some cases, Pb concentrations increased with increasing soil particle size, presumably due to the presence of residues of bullets in the soil matrix. As a pretreatment step, a shaking table was used for physical separation of soil to remove bullet residues while fractionating the contaminated soils into different sizes. The most effective separation and fractionation were achieved at vibration velocity of 296 rpm/min, the table slope of 7.0°, and the separating water flow rate of 23 L/min. The efficiency of ensuing soil washing process for LCS was maximized by using 0.5% HCl with the soil:washing solution mixing ratio of 1:3 for 1 hr treatment. On the contrary, HCS was most effectively remediated by using 1.0% HCl with the same soil:solution mixing ratio for 3 hr. This work demonstrated that the combined use of physical separation and soil washing could be a viable option to remediate soils highly contaminated with heavy metals.

Separation characteristics of particles in a self-rotating type centrifugal oil purifier

  • Pyo, Young-Seok;Jung, Ho-Yun;Choi, Yoon-Hwan;Doh, Deog-Hee;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.147-153
    • /
    • 2014
  • The centrifugal oil purifier is used in an engine for lubrication and to remove impurities. The momentum needed for the rotation of the cylindrical chamber is obtained by jet injections. An impure particle in the oil is separated by the centrifugal forces moving to the inner wall of the rotating cylindrical chamber body. The dust particles are eliminated when the particles are absorbed onto the surface of the inner wall of the chamber body. The flow characteristics and the physical behaviors of particles in this centrifugal oil purifier were investigated numerically and the filtration efficiencies was evaluated. For calculations, a commercial code is used and the SST (Shear Stress Transport) turbulence model has been adopted. The MFR (Multi Frames of Reference) method is introduced to consider the rotating effect of the flows. Under various variables, such as particle size, particle density and rotating speed, the filtration efficiencies are evaluated. It has been verified that the filtration efficiency is increased with the increments in the particle size, the particle density and the rotating speed of the cylindrical chamber.

Effect of the Particle Size and Unburned Carbon Content on the Separation Efficiency of Fly ash in the Countercurrent Column Flotation (向流컬럼浮選機에서 石炭灰의 크기 및 未燃炭素 含量이 分離特性에 미치는 영향)

  • 이정은;이재근
    • Resources Recycling
    • /
    • v.9 no.6
    • /
    • pp.36-44
    • /
    • 2000
  • Fly ash was composed of the unburned carbon and mineral particles. The former was able to attach on the bubbles, while the latter was not. Therefore, it was possible to separate the unburned carbon and the mineral from fly ash using the froth flotation process. This study was carried out to evaluate the separation efficiency as a function of the ny ash particle properties in the column flotation. Separation efficiency was analyzed for various size fraction of -38 fm,38~125 fm and 1125 W, and for various fly ash samples containing 7, 11, and 20 wt% unburned carbon. For the size fractions of -38 fm containing 7 wt% unburned carbon, separation efficiency was 86ft, whereas separation efficiency was found to be 74% for the size fraction of +125$\mu\textrm{m}$ containing 20 wt% unburned carbon. The results indicated that separation efficiency increased with the decrease in the particle size and the unburned carbon content of the fly ash.

  • PDF

Micro-sized carbon with dimple patterns prepared using an electro-spray method

  • Park, Mi-Seon;Lee, Young-Seak
    • Carbon letters
    • /
    • v.16 no.3
    • /
    • pp.215-218
    • /
    • 2015
  • Carbon micro particles with dimple patterns were produced by electro-spraying a solution of pitch in tetrahydrofuran. Particle formation depended on separation in an electrical field and volatilization of the solvent. More than 80% of the obtained carbon exhibited an average particle size of less than 50 μm. X-ray diffraction analysis suggests that the carbon with dimple patterns has increased crystallinity after heat treatment.

Effect of Particle Size and Unburned Carbon Content of Fly Ash from Hadong Power Plant on Compressive Strength of Geopolymers (하동화력발전소 비산재의 입도크기와 미연탄소 함량이 지오폴리머의 압축강도에 미치는 영향)

  • Kang, Nam-Hee;Chon, Chul-Min;Jou, Hyeong-Tae;Lee, Sujeong
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.510-516
    • /
    • 2013
  • Fly ash is one of the aluminosilicate sources used for the synthesis of geopolymers. The particle size distribution of fly ash and the content of unburned carbon residue are known to affect the compressive strength of geopolymers. In this study, the effects of particle size and unburned carbon content of fly ash on the compressive strength of geopolymers have been studied over a compositional range in geopolymer gels. Unburned carbon was effectively separated in the $-46{\mu}m$ fraction using an air classifier and the fixed carbon content declined from 3.04 wt% to 0.06 wt%. The mean particle size ($d_{50}$) decreased from $22.17{\mu}m$ to $10.79{\mu}m$. Size separation of fly ash by air classification resulted in reduced particle size and carbon residue content with a collateral increase in reactivity with alkali activators. Geopolymers produced from carbon-free ash, which was separated by air classification, developed up to 50 % higher compressive strength compared to geopolymers synthesized from raw ash. It was presumed that porous carbon particles hinder geopolymerization by trapping vitreous spheres in the pores of carbon particles and allowing them to remain intact in spite of alkaline attack. The microstructure of the geopolymers did not vary considerably with compressive strength, but the highest connectivity of the geopolymer gel network was achieved when the Si/Al ratio of the geopolymer gel was 5.0.

Development of Separation Algorithm of Overlapped Particles in Spay Flow (분무 유동에서 중첩 인자 분리 알고리즘의 개발)

  • Yang, C.J.;Kim, J.H.;Cho, D.H.;Oh, J.H.;Lee, Y.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.118-119
    • /
    • 2005
  • Recently, fire extinguishing systems based on water mists have been attracting public attentions in marine engineering. Performance of the fire extinguishing systems is influenced by the size and distribution of spayed water mists. Droplet analyzing method based on image processing technique for measuring droplet size and distribution has been developed. The morphological method based on partial curvature information of pre-processed images was adopted for recognition and separation of overlapped particles. Tested results show that the present method may be reliable for the analysis of the size and distribution of droplets produced by water mist spay flow.

  • PDF

Assessment of Soil Washing Efficiency for Arsenic Contaminated Site Adjacent to Jang Hang Refinery (장항제련소 주변 비소오염토양의 특성분석에 따른 토양세척 처리효율 평가)

  • Moon, So-Young;Oh, Min-Ah;Jung, Jun-Kyo;Choi, Sang-Il;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.1
    • /
    • pp.71-81
    • /
    • 2011
  • Cause of contamination in the study area nearby Jang Hang Refinery is dust scattering in refinery stack, and soil washing treatment is one of the proper technologies for soil remediation in this area. Site conditions frequently limit the selection of a treatment process. A treatment technology may be eliminated based on the soil classification or physicochemical characteristics of soil. This study was assessed the soil washing efficiency by conducting of soil characteristic analysis in the vicinity of Jang Hang Refinery Stack within a 2 km radius. Also, it was decided about remedial range with comparative analysis of As in soil by Korean Standard Test Method before/after revision, whereupon As concentration in soil showed a increasing tendency after revision. As a result, the soil washing using the size separation of soil was determined through identifying of As species in the soil. In this site, only particle size distribution and water content of soil can provide the initial means of screening for the potential use of soil washing.

정전선별법을 이용한 석탄회로부터 미연탄소분 제거에 관한 연구

  • 최우진;염영길
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.97-105
    • /
    • 1998
  • The goal of this study is to investigate the potential application of triboelectrostatic separation process for removing unburned carbon from fly ash. The process utilizes the difference in electrical charging characteristics between the organic material (carbon) and the mineral matter (fly ash). In the present work, dry separation tests have been conducted on Samchunpo fly ash samples using a bench - scale analytic separator. The test variables studied include air rate, feed rate, electric field strength, particle size, charger material and length, etc. The best separation results were obtained at the air rate 501/min, feed rate 15 g/min and voltage 15 ㎸. The fly ash with carbon content below 1 % was obtained with over 65% recovery.

  • PDF

Development of novel magnetic filter for paramagnetic particles in high gradient magnetic separation

  • Nishijima, Shigehiro;Nomura, Naoki
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.7-11
    • /
    • 2022
  • We are conducting research and development of magnetic filters for magnetic separation targeting paramagnetic materials. In order to develop a new magnetic filter with a large magnetic gradient, stainless fiber (SUS430, 120 mm × 3 mm) with a triangular cross section was sintered with a high void ratio (~ 70%) and the magnetic filter (20 mm × 2 mm) was created. When this magnetic filter was used to perform magnetic separation of hematite (particle size 50 ㎛) under a maximum magnetic flux density of 1.49 T, high separation rates were obtained.