• Title/Summary/Keyword: particle size effect

Search Result 1,972, Processing Time 0.027 seconds

Analysis of Particle Deposition onto a Heated or Cooled, Horizontal Free-Standing Wafer Surface (가열 또는 냉각되는 수평웨이퍼 표면으로의 입자침착에 관한 해석)

  • 유경훈;오명도;명현국
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1319-1332
    • /
    • 1995
  • Numerical analysis was performed to characterize the particle deposition behavior on a horizontal free-standing wafer with thermophoretic effect under the turbulent flow field. A low Reynolds number k-.epsilon. turbulence model was used to analyze the turbulent flow field around the wafer, and the temperature field for the calculation of the thermophoretic effect was predicted from the energy equation introducing the eddy diffusivity concept. The deposition mechanisms considered were convection, diffusion, sedimentation, turbulence and thermophoresis. For both the upper and lower surfaces of the wafer, the averaged particle deposition velocities and their radial distributions were calculated and compared with the laminar flow results and available experimental data. It was shown by the calculated averaged particle deposition velocities on the upper surface of the wafer that the deposition-free zone, where the deposition velocite is lower than 10$^{-5}$ cm/s, exists between 0.096 .mu.m and 1.6 .mu.m through the influence of thermophoresis with positive temperature difference of 10 K between the wafer and the ambient air. As for the calsulated local deposition velocities, for small particle sizes d$_{p}$<0.05 .mu.m, the deposition velocity is higher at the center of the wafer than at the wafer edge, whereas for particle size of d$_{p}$ = 2.0 .mu.m the deposition takes place mainly on the inside area of the wafer. Finally, an approximate model for calculating the deposition velocities was recommended and the calculated deposition velocity results were compared with the present numerical solutions, those of Schmidt et al.'s model and the experimental data of Opiolka et al.. It is shown by the comparison that the results of the recommended model agree better with the numerical solutions and Opiolka et al.'s data than those of Schmidt's simple model.

Effect of Sand Particle Sizes on Turf Vegetation of Creeping Bentgrass (모래입경이 Creeping Bentgrass 잔디 초지의 식생에 미치는 영향)

  • Park Sung-Jun;Cho Nam-Ki;Kang Young-Kil;Song Chang-Khil;Cho Young-Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.3
    • /
    • pp.205-210
    • /
    • 2005
  • This study was conducted from March 21 to July 9 in 2004 at JeJu Island to investigate the effect of different particle sizes (0.3-0.5, 0.5-0.8, 0.8-1.0, 1.0-1.5 and 1.5-2.0mm) on creeping bentgrass vegetation. The results obtained were summarized as follows; plant height became shorter as particle size was increased from 0.3-0.5 to 1.5-2.0 n. Root length, Minolta SPAD-502 chlorophyll reading value, leave and root weight were directly proportional plant height response. Degree of land cover and density of creeping bentgrass decreased as the particle size was increased from 0.3-0.5 to 1.5-2.0nm, and degree land cover and density of weed increased. The number of weed species were increased as the sand particle size was increased. Then ranking of the dominant weeds were Portulaca oleracea, Trifolium repens and Cyperus amuricus (at 0.3-0.5 and 0.5-0.8mm particle size), Trifolium repens, Portulaca oleracea and Polygonum hydropiper (at 0.8-1.0mm particle size), Portulaca oleracea, Polygonum hydropiper and Poa annua (at 1.5-2.0mm particle size). Based on the these findings, the optimum sand particle size for growth of creeping bentgrass seems to be about 0.3-0.5m in volcanic ash soils of Jeju island.

Effects of Temperature and Precursor-concentration on Characteristics of TiO2 Nanoparticles in Chemical Vapor Condensation Process -Part I: Real-time Particle Characterization by SMPS (화학기상응축 공정에서 TiO2 나노입자 특성에 미치는 반응온도와 전구체 농도의 영향 - Part I: SMPS를 이용한 실시간 입자특성 평가)

  • Lee, Chang-Woo;Yu, Ji-Hun;Im, Sung-Soon;Yun, Sung-Hee;Lee, Jai-Sung;Choa, Yong-Ho
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.323-327
    • /
    • 2003
  • Properties of nanoparticles synthesized during gas phase reaction were studied in terms of particle behaviors using real-time particle characterization method. For this study, $TiO_2$ nanoparticles were synthesized in the chemical vapor condensation process(CVC) and their in-situ measurement of particle formation and particle size distribution was performed by scanning mobility particle sizer(SMPS). As a result, particle behaviors in the CVC reactor were affected by both of number concentration and thermal coagulation, simultaneously. Particularly, growth and agglomeration between nanoparticles followed two different ways of dominances from coagulations by increase of number concentration and sintering effect by increased temperature.

Effect of Sawdust Moisture Content and Particle Size on The Fuel Characteristics of Wood Pellet Fabricated with Quercus mongolica, Pinus densiflora and Larix kaempferi Sawdust (신갈나무, 소나무, 낙엽송 목분의 함수율 및 크기가 목재펠릿의 연료적 특성에 미치는 영향)

  • Kim, Seong-ho;Yang, In;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.757-767
    • /
    • 2015
  • This study was conducted to investigate the effects of moisture content and particle size of sawdust on the fuel characteristics of wood pellets produced with Mongolian oak (Quercus mongolica, QUM), red pine (Pinus densiflora, PID) and larch (Larix kaempferi, LAK) sawdust using a flat-die pelletizer. Prior to produce wood pellets, the sawdust was controlled to the moisture content of 8, 11, 12% and was screened to the particle size of 2 and 4 mesh. In the analysis of its chemical composition, QUM had a high ash content, and PID and LAK contained large amount of lignin. In case of the fuel characteristics, PID pellets had the lowest moisture content of pellets (P-MC), and LAR pellets was found to have the highest bilk density (BD) and durability (DU). With the increase of moisture content of sawdust (S-MC), P-MC and DU of QUM, PID and LAK pellets increased, but BD of QUM and LAK pellets decreased. When size of sawdust used for the production of wood pellets decreased, P-MC and BD of LAK pellets and BD of QUM pellets increased. Decrease of particle size contributed to the increase of DU of QUM, PID and LAK pellets. In addition, BD and DU of QUM pellets produced with 12% S-MC sawdust increased as its particle size reduced. For LAK pellets, DU was not influence by particle size in the S-MCs of 10% and 12%, but increased with the decrease of particle size in the S-MC of 8%. Based on the results and economical aspects, 10% MC and 2 mesh paricle size for QUM sawdust and 12% MC and 2 mesh particle size for PID sawdust might be optimal conditions for pellets production, and fuel characteristics of wood pellets produced by the conditions greatly exceeded the minimum requirements for the $1^{st}$-grade wood pellets of the standard designated by Korea Forest Research Institute.

The Chemical Nature of Individual Size-resolved Raindrops and Their Residual Particles Collected during High Atmospheric Loading for PM2.5

  • Ma, Chang-Jin;Sera, Koichiro
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.176-183
    • /
    • 2017
  • Although it is well known that rain plays an important role in capturing air pollutants, its quantitative evaluation has not been done enough. In this study, the effect of raindrop size on pollutant scavenging was investigated by clarifying the chemical nature of individual size-resolved raindrops and their residual particles. Raindrops as a function of their size were collected using the raindrop collector devised by our oneself in previous study (Ma et al., 2000) during high atmospheric loading for $PM_{2.5}$. Elemental analyses of solid residues and individual residual particles in raindrops were subsequently analyzed by Particle Induced X-ray Emission (PIXE) and Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray Analysis (EDX), respectively. The raindrop number concentration ($m^{-2}h^{-1}$) tended to drastically decrease as the drop size goes up. Particle scavenging rate, $R_{sca.}$ (%), based on the actual measurement values were 38.7, 69.5, and 80.8% for the particles with 0.3-0.5, 0.5-1.0, and $1.0-2.0{\mu}m$ diameter, respectively. S, Ca, Si, and Al ranked relatively high concentration in raindrops, especially small ones. Most of the element showed a continuous decrease in concentration with increasing raindrop diameter. The source profile by factor analysis for the components of residual particles indicated that the rainfall plays a valuable role in scavenging natural as well as artificial particles from the dirty atmosphere.

A study on the Change of Uniaxial Compressive Strength and Young's Modulus According to the Specimen Size of Intact Material (무결함 재료의 크기에 따른 강도와 탄성계수의 변화에 관한 연구)

  • Lee, Seung-Woo;Song, Jae-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.3
    • /
    • pp.205-217
    • /
    • 2006
  • Rock and discontinuities are main factors consisting of a rock mass and the physical properties of each factor have direct effects on the mechanical stability of artificial structures in the rock mass. Because physical properties of the rock and discontinuities change a lot according to the size of test materials, a close attention is needed when the physical properties, obtained from laboratory tests, are used for the design of field structures. In this study, change of physical properties of intact materials due to the change of their size are studied. Six kinds of artificial materials including crystal, instead of an intact rock, are adopted for the study to guarantee the homogeneity of specimen materials even with relatively large size. Uniaxial strength and Young's modulus of each artificial material are checked out for a size effect and compared with the predicted values by Buckingham's theorem - dimensional analysis. A numerical analysis using PFC (Particle Flow Code) is also applied and primary factors influencing on the size effect are investigated.

A Study on Ultrafine SiO2 Particles Generation and Deposition by 2-Stage Tube Furnace Reactor (2단 튜브형 가열로 반응기에 의한 초미세 SiO2 입자의 제조 및 증착 연구)

  • You, Soo-Jong;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.233-239
    • /
    • 1997
  • The effects of preheating the gas stream on deposition characteristics of ultrafine $SiO_2$ particles were investigated theoretically. The model equations such as mass and energy balance equations and aerosol dynamic equations were solved to predict the particle growth and deposition. The gas temperatures, $SiCl_4$ concentrations, $SiO_2$ particle volumes, $SiO_2$ particle sizes and deposition efficiencies of $SiO_2$ particles were calculated for various preheating temperatures. As the preheater setting temperature increases, the $SiO_2$ particle size distribution becomes more uniform, because the effect of $SiCl_4$ diffusion decreases.

  • PDF

Effect of Particle Contamination on Objective Lens in a CD-ROM Drive on Laser Diode Power and Photo Diode RF Signal (CD-ROM 드라이브의 대물렌즈 입자오염이 Laser Diode의 Power와 Photo Diode의 RF Signal에 미치는 영향)

  • Pae, Yang-Il;Hwang, Jung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1429-1434
    • /
    • 2003
  • A number of dust particles are intruded into ODD(Optical disk drive) due to the flow caused by disk rotation and are adhered to a lens or disk surface. The space between the disk and the lens is being reduced. Someone indicates the problems of this drive that are relatively small data storing capacity and slow access time. In recent, the problems of this optical disk drive mentioned above are being solved by adding the speed of the disk's revolution, making the actuator high-speed or light, and making the beam spot size smaller than making the space narrow between disk and lens. These particle contamination affects seriously RF Signal, readout signal in an ODD. Especially, the affected parts by a particle contamination in an ODD's readout signal are objective lens and media.

  • PDF

Simulation of particle filtration by Brownian dynamics (Brownian dynamics 를 이용한 입자 포집 모사)

  • Bang, Jong-Geun;Yoon, Yoong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1922-1927
    • /
    • 2008
  • In the present study, deposition of discrete and small particles, which diameter is less than $1{\mu}m$, on a filter element was simulated by stochastic method. Trajectory of each particle was numerically solved by Langevin equation and Brownian random motion was treated by Brownian dynamics. Lattice Boltzmann method (LBM) was used to solve flow field around the filter collector and deposit layer. Interaction between flow field and deposit layer was obtained from a converged solution from an inner-loop calculation. Simulation method is properly validated and collection efficiency due to different filtration parameters are examined and discussed. Morphology of deposit layer and its evolution was visualized in terms of the particle size. The particle loaded effect on collection efficiency was also discussed.

  • PDF

An Experimental Investigation of Particle Impingement Erosion in Hydraulic Systems (유압시스템의 입자 침해 침식의 실험적 고찰)

  • 이재천;김성훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.117-122
    • /
    • 2002
  • This study assesses the wear process of particle impingement erosion which is a major source of erosion among fluid power components. First, Bitter's theory was modified to simplify engineering calculations. Second, actual experiments were conducted to validate the modified equation. And the effect of concentration and size distribution of impinging particles was tested. Little deviation from the prediction of the modified equation was observed. To develop complete analytical approach to the erosion mechanism, further experimental data are required to establish a correlation with other engineering parameters.