• 제목/요약/키워드: particle size analyzer

검색결과 359건 처리시간 0.023초

실시간 입자분포 측정을 위한 Radial Exhaust Multi-port System의 개발 및 성능평가 (Development and Performance Evaluation of Radial Exhaust Multi-port System for Real-time Particle Size Distribution Measurement)

  • 이홍규;이양우;전기수;안강호
    • 한국입자에어로졸학회지
    • /
    • 제9권3호
    • /
    • pp.133-137
    • /
    • 2013
  • Measuring particle size distribution is one of the primary concerns in aerosol studies. For a nano-particle size distribution measurement, many scientists use a combination of a differential mobility analyzer (DMA) and a condensation particle counter (CPC) system, which is a called scanning mobility particle sizer (SMPS). Although it has a very high particle size resolution, some issues still remain. These problems include residence time between a DMA and a CPC, discontinuity of a CPC, and disturbance due to long scanning time during the precise measurement of particles. In particular, long scanning time is not adequate for measuring particle size distribution since the particle concentration is changing during the measurement. In this study, we developed radial exhaust multi-port system (REM-system) with no scanning time and high resolution to measure real-time particle size distribution. As a result of the REM-system performed using mono-disperse particle, it is expected that this system will be suitable for measuring continuously changing aerosol. If the counting efficiency of multi-condensation particle counter (M-CPC) and data inversion matrix are completed, REM-system will be a very adequate system for unsteady aerosol, which changes for SMPS scanning time.

SHS법에 의한 탄화텅스텐 분말 합성 (Synthesis of Tungsten Carbide Powders by SHS Method)

  • 전호병;조덕호;이형복;박성
    • 한국세라믹학회지
    • /
    • 제31권10호
    • /
    • pp.1159-1168
    • /
    • 1994
  • We powders were synthesized from W powders in differnet particle sizes by Self-propagating High-temperature Synthesis process (SHS) using a chemical furnace. The effects of the mole ratio of chemical fuel content, pellet thickness and the mole ratio between carbon and tungsten (C/W Ratio) on synthesis were investigated with the tungsten powders have different particle size each other. Compositional and structural characterization of these powders was carried out by scanning electron microscope (SEM0 and x-ray diffractometer. Powder characterization was carried out by the measurement of particle size distribution with laser-particle size analyzer. The amounts of WC obtained by SHS process depend very much on the particle size of tungsten powder and heat contents given in a product, i.e. as the particle size of W powder is smaller, the amounts of WC produced increase. Also the more heat contents is given, the more amounts of WC increase. By optimizing the synthesis conditions, it is possible to fabricate WC powders which have little secondary phases (W2C, C).

  • PDF

Investigation of the Optical and Cloud Forming Properties of Pollution, Biomass Burning, and Mineral Dust Aerosol

  • 이용섭
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2006년도 춘계학술대회 논문집
    • /
    • pp.55-56
    • /
    • 2006
  • This thesis describes the use of measured aerosol size distributions and size-resolved hygroscopic growth to examine the physical and chemical properties of several particle classes. The primary objective of this work was to investigate the optical and cloud forming properties of a range of ambient aerosol types measured in a number of different locations. The tool used for most of these analyses is a differential mobility analyzer / tandem differential mobility analyzer (DMA / TDMA) system developed in our research group. To collect the data described in two of the chapters of this thesis, an aircraft-based version of the DMA / TDMA was deployed to Japan and California. The data described in two other chapters were conveniently collected during a period when the aerosol of interest came to us. The unique aspect of this analysis is the use of these data to isolate the size distributions of distinct aerosol types in order to quantify their optical and cloud forming properties. I used collected data during the Asian Aerosol Characterization Experiment (ACE-Asia) to examine the composition and homogeneity of a complex aerosol generated in the deserts and urban regions of China and other Asian countries. An aircraft-based tandem differential mobility analyzer was used for the first time during this campaign to examine the size-resolved hygroscopic properties of particles having diameters between 40 and 586 nm. Asian Dust Above Monterey (ADAM-2003) study was designed both to evaluate the degree to which models can predict the long-range transport of Asian dust, and to examine the physical and optical properties of that aged dust upon reaching the California coast. Aerosol size distributions and hygroscopic growth are measured in College Station, TX to investigate the cloud nucleating and optical properties of a biomass burning aerosol generated from fires on the Yucatan Peninsula. Measured aerosol size distributions and size-resolved hygroscopicity and volatility were used to infer critical supersaturation distributions of the distinct particle types that were observed during this period. The predicted CCN concentrations were used in a cloud model to determine the impact of the different aerosol types on the expected cloud droplet concentration. RH-dependent aerosol extinction coefficients are calculated at a wavelength of 550 nm.

  • PDF

간헐포기 소화 슬러지의 고분자 응집제에 의한 개량과 입도 분포 변화에 관한 연구 (A Study on the Conditioning with Polymer and the Particle Size Distribution of Intermittent Aerobic Digestion Sludge)

  • 김희준;김성홍;최재성
    • 한국환경보건학회지
    • /
    • 제30권3호
    • /
    • pp.253-258
    • /
    • 2004
  • Synthetic organic polyelectrolytes can be used to condition sludges to enhance their dewaterability. Intermittent aerobic digestion is an useful digestion technology and has many advantages like neutral pH, low installation cost and easiness to operation. The objectives of this study were to investigate the dewaterability of intemittent aerobic digestion sludge and to find the relationship between dewaterability and particle size distribution change under the conditioning of intermittent aerobic digestion sludge by cationic polyelectrolyte. Digested sludge from intermittent aerobic digestion was used and cationic polyacrylamide polymer was added as a conditioner. CST(capillary suction time), TTF(time-to-filtration) were tested as a dewaterability index and the number of particle distribution was analyzed using particle size analyzer. The results indicate that cationic polyelectrolytes is useful to enhance dewaterability of intermittent aerobic digestion sludge. Mean particle diameter was increased as polymer dosage increased and its value was reached up to 100 mm on the condition of optimal cationic polymer dosage. CST and TTF are well correlated with mean particle diameter when the weighting order is 1.7. By the optimal conditioning with cationic polymer, particles in the filtrate are also reduced significantly and this means that conditioning is helpful to main stream by reducing SS loading from return flow.

입자 측정방법을 통한 초기 수트입자 연구 (Study of Incipient Soot Particles with Measuring Methodologies)

  • 이의주
    • 한국가시화정보학회지
    • /
    • 제2권1호
    • /
    • pp.12-17
    • /
    • 2004
  • The physical characteristics of soot near the soot inception point were investigated with various measurements. In-situ measurements of particle size and volume fraction were introduced based on time resolved laser-induced incandescence (TIRE-LII) and laser-induced ion mobility (LIIM). The one has more convenience and accuracy than conventional LII technique and the other works best for particle sizes of a few nanometers at high concentrations in a uniform concentration field. A complementary ex-situ measurement of particle size is nano differential mobility analyzer (Nano-DMA), which recently developed for measuring particle sizes between 2nm and 100nm and provides high-resolution size information for early soot. Particles will be also collected on transmission electron microscope (TEM) grids using rapid thermophoretic sampling and analyzed for morphology. These measurements will allow fresh and original insight into the characterizing soot inception process. The measured physical properties of incipient soot will clarify the controlling growth mechanism combined with chemical ones, and the dominant mechanism for soot modeling can be deduced from the information.

  • PDF

초 고농도 Ag 나노 졸의 입자크기 제어가 잉크 점성거동에 미치는 영향 (The Effect of Particle Size on Rheological Properties of Highly Concentrated Ag Nanosol)

  • 송해천;남산;이병석;최영민;류병환
    • 한국세라믹학회지
    • /
    • 제46권1호
    • /
    • pp.41-46
    • /
    • 2009
  • The rheological properties of highly concentrated Ag nano sol depending on particle size were studied. The Ag nano sol was prepared by reducing the Ag ion in aqueous solution. The size of Ag nano particle was controlled by two steps of nucleation and growth, and the thickness of adsorption layer was varied by molecular weight of polyelectrolytes. The polyelectrolytes acted as not only ionic complex agent in ionic state and but also dispersant after formation of Ag nano sol. The effective volume was controlled by combination of varying the molecular weight of polyelectrolytes and the size Ag nano sol. The particle size and the viscosity of nano sol were characterized by particle size analyzer, HR-TEM and cone & plate viscometer. It was found that the 10 nm and 40 nm-sized Ag nano sols were prepared by controlling the nucleation and growth steps, respectively. Finally, we could prepare highly concentrated Ag nano sol over 50 wt%.

Image Analysis of Surimi Sol and Gel in Composite System

  • Yoo, Byoung-Seung;Lee, Chong M.
    • Preventive Nutrition and Food Science
    • /
    • 제3권3호
    • /
    • pp.292-294
    • /
    • 1998
  • Surimi sol and gel were prepared by mixing egg albumin, starch, oil and carrageenan, which are used as representative ingredients in the surimi composite, at different ratio. Structural properties in surimi composite were investigated by examining the phase changes and dispersion pattern (average particle size, size range and the averge number of particle) of the particulate ingredients in sol and gel with an image analyzer. A staining technique of the specimen containing egg albumin in surimi gel was developed by adjusting pH of a toluidine staining solution. Image analysis revealed that size and density of ingredient particles were function of the level and dispersion of ingredients except of starch-incorporated surimi gel which showed maximum particle size at 6%.

  • PDF

회절무늬를 이용한 미세물체의 특성 측정 (Characterization of Microscale Objects based on the Diffraction Pattern Analysis)

  • 강기호;전형욱;손정영;오명환
    • 한국광학회지
    • /
    • 제2권1호
    • /
    • pp.1-6
    • /
    • 1991
  • 회절현상을 이용하여 복수 미세 입자의 특성 측정을 위한 격자형의 검지기를 사용한 데이터 처리방식을 제안하고 이에 따른 광학 및 신호처리 시스템을 구성하였다. 에너지 분포함수의 최대치와 최소치를 이용하여 같은 분무기로 분무된 증류수, 알코올, 실리콘 오일, 글리세린 등의 분포를 측정했는데 최대치와 최소치에 의해 구한 입자의 크기가 서로 잘 일치하였다.

  • PDF

가솔린 엔진용 2홀 2분류와 4홀 2분류 타입 인젝터의 액적 평균 직경의 동적 거동 비교 (Comparison of Dynamic Behavior of Droplet Mean Diameter with 2holes-2sprays and 4holes-2sprays Types Injector for Gasoline Engine)

  • 김범준;조대진;윤석주
    • 한국분무공학회지
    • /
    • 제11권1호
    • /
    • pp.17-23
    • /
    • 2006
  • The influence of fuel spray characteristics on engine performance has been known as one of the major concerns to Improve fuel economy and to reduce exhaust emissions. In general, the UBHC(Unburned Hydrocarbon) emission could be reduced by decreasing the droplet size of the fuel sprays. In PFI (Port Fuel Injection) gasoline engines, the mixture of air and fuel would not be uniform under a certain condition, because the breakup and production of spray droplets are made in a short distance between the fuel injector and intake valve sheat. In this study, were investigated the transient spray characteristics and dynamic behavior of droplets from 2holes-2sprays and 4holes-2sprays type injectors used in PFI gasoline engine. Mean droplet size and optical concentration were measured by LDPA (Laser Diffraction Particle size Analyzer). The variation of droplet mean diameter and optical concentration were measured for understanding the behavior of unsteady spray.

  • PDF

Cellular Uptake and Cytotoxicity of β-Lactoglobulin Nanoparticles: The Effects of Particle Size and Surface Charge

  • Ha, Ho-Kyung;Kim, Jin Wook;Lee, Mee-Ryung;Jun, Woojin;Lee, Won-Jae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권3호
    • /
    • pp.420-427
    • /
    • 2015
  • It is necessary to understand the cellular uptake and cytotoxicity of food-grade delivery systems, such as ${\beta}$-lactoglobulin (${\beta}$-lg) nanoparticles, for the application of bioactive compounds to functional foods. The objectives of this study were to investigate the relationships between the physicochemical properties of ${\beta}$-lg nanoparticles, such as particle size and zeta-potential value, and their cellular uptakes and cytotoxicity in Caco-2 cells. Physicochemical properties of ${\beta}$-lg nanoparticles were evaluated using particle size analyzer. Flow cytometry and confocal laser scanning microscopy were used to investigate cellular uptake and cytotoxicity of ${\beta}$-lg nanoparticles. The ${\beta}$-lg nanoparticles with various particle sizes (98 to 192 nm) and zeta-potential values (-14.8 to -17.6 mV) were successfully formed. A decrease in heating temperature from $70^{\circ}C$ to $60^{\circ}C$ resulted in a decrease in the particle size and an increase in the zeta-potential value of ${\beta}$-lg nanoparticles. Non-cytotoxicity was observed in Caco-2 cells treated with ${\beta}$-lg nanoparticles. There was an increase in cellular uptake of ${\beta}$-lg nanoparticles with a decrease in particle size and an increase in zeta-potential value. Cellular uptake ${\beta}$-lg nanoparticles was negatively correlated with particle size and positively correlated with zeta-potential value. Therefore, these results suggest that the particle size and zeta-potential value of ${\beta}$-lg nanoparticles play an important role in the cellular uptake. The ${\beta}$-lg nanoparticles can be used as a delivery system in foods due to its high cellular uptake and non-cytotoxicity.