• Title/Summary/Keyword: particle size analyzer

Search Result 359, Processing Time 0.026 seconds

Experimental and Numerical Investigation of the Effect of Load and Speed of T-GDI Engine on the Particle Size of Blow-by Gas and Performance of Oil Mist Separator (T-GDI 엔진의 속도 및 하중이 블로우바이 가스의 오일입자 크기와 오일분리기 성능에 미치는 영향에 대한 실험 및 수치적 연구)

  • Jeong, Soo-Jin;Oh, Kwangho
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.162-169
    • /
    • 2020
  • The worldwide focus on reducing the emissions, fuel and lubricant consumption in T-GDI engines is leading engineers to consider the crankcase ventilation and oil mist separation system as an important means of control. In today's passenger cars, the oil mist separation systems mainly use the inertia effect (e.g. labyrinth, cyclone etc.). Therefore, this study has investigated high efficiency cylinder head-integrated oil-mist separator by using a compact multi-impactor type oil mist separator system to ensure adequate oil mist separation performance. For this purpose, engine dynamometer testing with oil particle efficiency measurement equipment and 3D two-phase flow simulation have been performed for various engine operating conditions. Tests with an actual engine on a dynamometer showed oil aerosol particle size distributions varied depending on operating conditions. For instance, high rpm and load increases bot only blow-by gases but the amount of small size oil droplets. Submicron-sized particles (less than 0.5 ㎛) were also observed. It is also found that the impactor type separator is able to separate nearly no droplets of diameter lower than 3 ㎛. CFD results showed that the complex aerodynamics processes that lead to strong impingement and break-up can strip out large droplets and generate more small size droplets.

Droplet size measurement using image processing method (이미지프로세싱 기법을 이용한 액적크기 측정)

  • Lim Byoungjik;Jung Kihoon;Khil Taeock;Yoon Youngbin
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.1
    • /
    • pp.25-31
    • /
    • 2004
  • Droplet size is one of the most important parameter which controls the performance of the combustion system using liquid fuel or oxidizer. Droplet formation and its size are mainly affected by the injection velocity and ambient gas density. Recently, droplet size measurement was conducted by PDPA or Malvern particle analyzer using laser light. But at this paper image processing method was developed to measure droplet size. And its validation was investigated with reticle.

  • PDF

Development of V-SAM Process and Surface Characterization for Anti-contamination of CMP Conditioner (CMP Conditioner의 오염방지를 위한 V-SAM 공정개발과 박막특성 분석)

  • Kim, Dong-Chan;Kim, In-Kwon;Kim, Jeong;Chun, Jong-Sun;Park, Mun-Seak;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.56-56
    • /
    • 2009
  • 반도체 device가 점점 고집적화, 다층화 되면서 막질의 평탄화를 위한 CMP (chemical mechanical planarization) 공정은 반도체 제작 공정에서 필수 요건이 되었다. 특히 pad conditioning은 CMP 공정 중, 막질의 제거율과 균일도를 유지시키기 위한 중요한 공정이다. 하지만, conditioner를 장시간 사용할 경우 slurry residue와 같은 잔류 오염물질들이 conditioner의 표면의 오염을 유발할 수 있고 이로 인해 conditioner의 수명이 단축되거나 웨이퍼 표면에 결함을 유발할 수도 있다. 본 연구에서는 이를 방지하기 위해 vapor SAM을 이용하여 Ni conditioner 표면에 소수성 박막을 증착하여 오염여부를 평가해 보았다. 먼저, Ni wafer를 이용하여 증착 온도와 압력에 따라 소수성 박막을 증착하여 표면특성을 평가해 보았다. 증착전과 후에 Ni wafer 표면의 접촉각은 contact angle analyzer (Phoenix 400, SEO, Korea)를 이용하여 측정하였다. 박막 표면 형상과 거칠기는 AFM (XE-100, PSIA, Korea)를 이용하여 평가되었고 묘면 성분 분석을 위해 FT-IR (Nicolet 6700, Thermo Scientific, USA)이 사용되었다. SEM (S-4800, Hitach, Japan)은 박막 증착 전과 후의 conditioner를 이용하여 실제 conditioning후 conditioner 표면의 particle 오염정도를 관찰하기 위해 사용되었다. 또한, conditioner 표면에 실제 오염되어있는 particle 개수를 평가하기 위해 particle size analyzer (Accusizer 780A, Particle Sizing Systems Co., USA)을 사용하였다. 본 실험을 통해 최적 증착 조건을 확립하였으며 실제 conditioner 표면에 소수성 박막을 증착 후 $100^{\circ}$ 이상의 높은 contact angle을 확인할 수 있었다. 또한, 소수성 박막이 증착된 conditioner의 경우 실제 conditioning후 표면 particle 오염이 현저히 감소되었음을 확인할 수 있었다.

  • PDF

Preparation and Physical Properties of Poly(Styrene/Acrylate) Core-Shell Latex Particles (Poly(Styrene/Acrylate) Core-Shell 라텍스 입자의 제조와 물성에 관한 연구)

  • Lee, Kyoung-Goo;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.27-32
    • /
    • 2003
  • The core-shell latex particles were prepared by sequential emulsion polymerization of alkyl methacrylate and styrene(ST) by using an water-soluble initiator(APS) after preparing monomer pre-emulsion in the presence of an anionic surfactant(SDBS). In organic/organic core-shell polymerization, the pre-emulsion method, which minimized required quantity of sulfactant, has been used to increase the conversion rate and the stability of core-shell latex particles as well as to reduce the formation of secondary particle that cause problems of soap-free emulsion during shell polymerization. We used several methods to observe the core-shell structure. The core-shell structure was studied by measuring pH change during hydrolysis by NaOH, glass transition temperature($T_g$) by differential scanning calorimeter(DSC), morphology of latex by transmission electron microscope(TEM) and change of particle size and distribution by a particle analyzer.

Formation and Hygroscopic Growth Properties of Ultrafine Particles in College Station, Texas, in 2003 (2003년 미국 텍사스 칼리지스테이션에서 관측된 초미세입자의 형성과 흡습 성장 특성)

  • Lee, Yong-Seob;Collins, Don R.
    • Journal of Environmental Science International
    • /
    • v.16 no.7
    • /
    • pp.793-798
    • /
    • 2007
  • During May of 2003, smoke from fires in the Yucatan Peninsula was transported across the Gulf of Mexico and into Texas where it caused significant enhancement in measured aerosol concentrations and reduced visibility. During this event, the formation and growth of aerosol particles has been observed by a differential mobility analyzer (DMA) / tandem differential mobility analyzer (TDMA) system to characterize the size distribution and size-resolved hygroscopicity of the aerosol. The most number concentration is by the particles smaller than 100 nm, but the integrated number concentrations for over 100 nm increased due to the aerosol growth. Hygroscopic growth factor increase from 1.2 to 1.4 for 25, 50, and 100 nm particles during the nucleating period. This distribution and the aerosol properties derived from the TDMA data were used to calculate the growth rate. Particle growth rates were in the range 1-12 nm/hr.

The Effect of Coal Particle Size on Char-$CO_{2}$ Gasification Reactivity by Gas Analysis (가스분석을 이용한 석탄 입자크기가 촤-$CO_{2}$ 가스화 반응성에 미치는 영향 연구)

  • Kim, Yong-Tack;Seo, Dong-Kyun;Hwang, Jung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.372-380
    • /
    • 2011
  • Char gasification is affected by operating conditions such as reaction temperature, reactants gas partial pressure, total system pressure and particle size in addition to chemical composition and physical structure of char. The aim of the present work was to characterize the effect of coal particle size on $CO_{2}$ gasification of chars prepared from two different types of bituminous coals at different reaction temperatures(1,000-$1,400{^{\circ}C}$). Lab scale experiments were carried out at atmospheric pressure in a fixed reactor where heat was supplied into a sample of char particles. When a flow of $CO_{2}$(40 vol%) was delivered into the reactor, the char reacted with $CO_{2}$ and was transformed into CO. Carbon conversion of the char was measured using a real time gas analyzer having NDIR CO/$CO_{2}$ sensor. The results showed that the gasification reactivity increased as the particle size decreased for a given temperature. The sensitivity of the reactivity to particle size became higher as the temperature increases. The size effects became remarkably prominent at higher temperatures and became a little prominent for lower reactivity coal. The particle size and coal type also affected reaction models. The shrinking core model described better for lower reactivity coal, whereas the volume reaction model described better for higher reactivity coal.

A Study on Opaque Porcelain for P.F.M Crown - Focused on Paste Opaque - (도재전장관용 Opaque 도재에 관한 연구 - paste opaque을 중심으로 -)

  • Kim, Sa-Hak;Ko, Dae-Jin;Lee, Yong-Keun;Kim, Kwang-Mahn;Kim, Kyoung-Nam
    • Journal of Technologic Dentistry
    • /
    • v.23 no.2
    • /
    • pp.211-221
    • /
    • 2002
  • The purpose of this study was to analyze the commercial paste opaque products currently available in domestic of foreign as well as domestic, such as Duceram Plus(DU; Ducera Dental GmbH, Germany), VMK 95(VM; Vita Co., Germany), Noritake EX-3(EX; Noritake Co., Japan) and Ceramax(CE; Alphadent Co., Korea). They were characterized in thermal expansion coefficient, particle size distribution, viscosity and solvent using thermomechanical analyzer, particle size analyzer, rheometer and infrared spectrophotometer. Experimental results are as follows; Firstly, thermal expansion coefficients were determined $13.9{\times}10-6/^{\circ}C$ for DU, $14.3{\times}10-6/^{\circ}C$ for VM, $13.3{\times}10-6/^{\circ}C$ for EX, and $14.0{\times}10-6/^{\circ}C$ for CE. Secondly, percent of partice size below $1{\mu}m$ were 12% for DU, VM and CE, and 13% for EX, percent between $1{\mu}m$ and $5{\mu}m$ were 42% for DU, 42% for VM, 38% for EX, and 61 % for CE, percent between $5{\mu}m$ and $10{\mu}m$ were 21 % for DU, 24% for VM, 20% for EX, and 18% for CE, and over $10{\mu}m$ were 25% for DU, 22% for VM, 29% for EX, 9% for CE. Thirdly, the basic composition of the solvent in all of the commercial paste opaques were determined as ethylene glycol from FT-IR investigation. Lastly, measured viscosities were 1798 cp for DU, 536 cp for VM, 1110 cp for EX, and 721 cp for CE.

  • PDF

A Study of Spray Characteristics of the Rotating Fuel Nozzle with Orifice Diameters (회전연료노즐의 오리피스직경에 따른 분사특성연구)

  • Lee, Mae-Hoon;Jang, Seong-Ho;Lee, Dong-Hun;Choi, Seong-Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.51-56
    • /
    • 2010
  • An experimental study was performed to understand spray characteristics of the V type rotating fuel nozzle with orifice diameters by using high speed rotational system. The experimental apparatus consist of a high speed rotational system, fuel injection system and acrylic case. The droplet size and velocity were measured by PDPA(Phase Doppler Particle Analyzer) and spray was visualized by using Nd-Yag laser-based flash photography. From the test results, droplet size is reduced with increasing orifice diameter up to the critical value. When increasing orifice diameter over than this critical value, droplet size is not decreased with increasing the orifice diameter. This is due to the irregular distribution of the liquid sheet around the inner surface of injection orifice.

Synthesis of Polyurethane Microgel Containing PEG by Solution Polymerization (용액중합에 의한 PEG 함유 Polyurethane Microgel의 합성)

  • Park, Chul Soon;Shin, Young Jae;Lee, Chun Il;Pyo, Hyeong Bae;Shin, Jae Sup
    • Journal of Adhesion and Interface
    • /
    • v.8 no.2
    • /
    • pp.9-14
    • /
    • 2007
  • Poly(ethylene glycol) (PEG), isophoron diisocyanate (IPDI), and 1,1,1-tris(hydroxymethyl)propane (THMP) were used to synthesize polyurethane microgel. The formulation to form a microgel was determined, and the shape and the properties of the microgel were characterized with SEM and particle size analyzer. The microgel was only formed when PEG was used more than THMP exceedingly. Therefore, it is believed that PEG plays an important role in the synthesis of the microgel. During the formation of the microgel, the viscosity of the microgel solution was decreased. Molecular weights of the PEGs which were used in this research were 2,000, 6,000, and 10,000. The microgel synthesized with PEG 6000 showed the best property in comparison with others. The size of the microgel measured by particle size analyzer were about 130~230 nm.

  • PDF

A Study on the Statistical Analysis of the Flow Characteristics of Droplet in the Cross Region of Twin Spray (이중분무 교차지역에서의 액적유동특성의 통계학적 분석에 관한 연구)

  • 조대진;윤석주;최태민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.635-644
    • /
    • 1994
  • This study investigated mainly on the flow characteristics of a droplet in the cross region of twin spray. The velocities of the droplet were measured along the axial and radial direction, and the flow characteristics of the droplet were statistically analyzed. For the statistical analysis, the probability density of the turbulent components has been studied, and then the Reynolds shear stress, the skewness and the flatness factors were calculated, and compared with the Gaussian value. Two pressure swirl stomizers were used for the twin spray system and kerosene was employed as the working liquid. 2-D PDA(particle dynamic analyzer) was used for the purpose of the measurement of droplet size and velocities. As a result, it was found that (1) the droplets collision was taken place strongly in the cross region. So, a large momentum loss of droplets due to the loss of natural movement direction was occurred, and momentum loss of radial direction was greater than that of axial direction. (2) The axial direction skewness factor approached to zero like the Gaussian distribution in the cross region of twin spray. (3) In the cross region of twin spray, the fluctuation instability of droplet was increased because of the development of the turbulence characteristics due to the droplet collision.