• Title/Summary/Keyword: particle removal

Search Result 749, Processing Time 0.024 seconds

Analysis of Characteristics and Removal Efficiency of Road-deposited Sediment on Highway by Road Sweeping According to Particle Size Distribution (고속도로 노면퇴적물의 특성 및 도로청소에 의한 입도별 제거효율 분석)

  • Kang, Heeman;Kim, Hwang Hee;Jeon, Ji-Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.4
    • /
    • pp.286-295
    • /
    • 2021
  • The removal efficiency of road-deposited sediment (SDR) by road sweeping was analyzed by performing particle size analysis before and after road sweeping at four highways during May to December 2019. The SDR accounted for the largest proportion in the range of 250 to 850 ㎛ and the degree of its proportion had an effect on the particle size distribution curve. The particle size distribution of the collected sediments showed a similar distribution at all sites. Below 75 ㎛, the removal efficiency of SDR showed a constant value around 40%, but above 75 ㎛, it increased as the particle size increased. The removal efficiency was 82-90% (average 86%) for gravel, 66-93% (average 79%) for coarse sand, 35-92% (average 64%) for fine sand, 29-69% (average 44%) for very fine sand, 19-58% (average 40%) for silt loading, 10-59% (average 40%) for TSP, 13-57% (average 40%) for PM10, and 15-61% (average 38%) for PM2.5. SDR removal efficiency showed an average of 69% for the four highways. It was found that if the amount of SDR was less than 100 g/m2, it was affected by the road surface condition and had a large regional deviation. As such, the amount of SDR and the removal efficiency increased. The fine particles, which have relatively low removal efficiency, contained a large amount of pollutants, which is an important factor in water and air pollution. Therefore, various measures to improve the removal efficiency of fine particles in SDR by road sweeping are needed.

Investingation of Laser Shock Wave Cleaning with Different Particle Condition (오염 입자 상태에 따른 레이저 충격파 클리닝 특성 고찰)

  • 강영재;이종명;이상호;박진구;김태훈
    • Laser Solutions
    • /
    • v.6 no.3
    • /
    • pp.29-35
    • /
    • 2003
  • In semiconductor processing, there are two types of particle contaminated onto the wafer, i.e. dry and wet state particles. In order to evaluate the cleaning performance of laser shock wave cleaning method, the removal of 1 m sized alumina particle at different particle conditions from silicon wafer has been carried out by laser-induced shock waves. It was found that the removal efficiency by laser shock cleaning was strongly dependent on the particle condition, i.e. the removal efficiency of dry alumina particle from silicon wafer was around 97% while the efficiencies of wet alumina particle in DI water and IPA are 35% and 55% respectively. From the analysis of adhesion forces between the particle and the silicon substrate, the adhesion force of the wet particle where capillary force is dominant is much larger than that of the dry particle where Van der Waals force is dominant. As a result, it is seen that the particle in wet condition is much more difficult to remove from silicon wafer than the particle in dry condition by using physical cleaning method such as laser shock cleaning.

  • PDF

Influence of Interaction of Surface Charges of PET Fiber and $\alpha$-Fe2O3 Particle on Detergency of Particulate Soil (PET섬유와 $\alpha-Fe_2O_3$ 입자의 표면전하간 상호작용이 고형오구의 세척성에 미치는 영향)

  • 강인숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.8
    • /
    • pp.1132-1140
    • /
    • 1998
  • The adhesion and removal of $\alpha$-Fe2O3 particles on the from PET fabric in NPE solution with different ionic strength were discussed in terms of interaction of surface charge of particle and substrate. The adhesion of $\alpha$-Fe2O3 particles to PET fabric and its removal from PET fabric were carried out by using water bath shaker and Terg-O-Tometer under various solution conditions. The ζ potential of PET fiber and $\alpha$-Fe2O3 particles in the detergent solution were measured by steaming potential and microelectrophoresis methods, respectively. The adhesion and removal amount of $\alpha$-Fe2O3 particles on the from PET fabric increased with increasing time of adhesion and removal, and the rates of adhesion and removal were high at the initial stage of adhesion and removal, and then the rates decreased with passing time. The adhesion and removal amount of $\alpha$-Fe2O3 particles on and from PET fabric increased with increasing pH of solution regardless ionic strength. The tendencies and degree of adhesion and removal were very similar regardless interaction of surface charge of particle and fiber. Therefore, in the presence of a surfactant and electrolyte, the influence of interaction of surface charge of particle and substrate on the detergency of particulate soil was small.

  • PDF

Determination of Optimum Coagulant Dosage for Effective Water Treatement of Chyinyang Lake - The Effect of Coagulant Dosing on Removal of Algae- (진양호소수의 효과적인 정수처리를 위한 최적응집제 주입량 결정 -조류제거를 위한 응집제 주입효과-)

  • 이원규;조주식;이홍재;임영성;허종수
    • Journal of Environmental Science International
    • /
    • v.8 no.5
    • /
    • pp.625-631
    • /
    • 1999
  • This study was performed to determine the optimum coagulant dosing for effective treatment of raw water in Chinyang lake. Removal rates of algae and characteristics of the water according to coagulants dosage were investigated by treatment with Microcystis aeruginosa, which is a kind of blue-green algae, to the raw water below 5NTU. The coagulants dosage for maximum removal rate of algae were 30 mg/$\ell$ of Alum, 30 mg/$\ell$ of PAC and 10 mg/$\ell$ of PACS, respectively. The removal rate of algae in 30 mg/$\ell$ of PAC was highest as 85% compared with the other treatments. At the point of maximum removal rate of algae, the removal rates of turbidity were 34%, 66% and 22% in Alum, PAC and PACS, respectively. Residual Al was decreased depend upon decreasing turtidity in water by treatment of Alum or PAC, but decreased depend upon increasing turbidity in water by treatment of PACS. The removal rate of ${Mn}_{2+}$ in water was high in the order of Alum, PAC and PACS treatment. And ${Fe}_{2+}$ in water was not changed by treatemnt of these coagulants. Particle numbers distributions according to the particle size of suspended solids that were not precipitated at 8 min. of settling time after treatment of coagulants dosage for the maximum removal rate of algae were investigated. Most of the particle sizes were below 30 $\mu$m and particle numbers distributions below 10 $\mu$m were 64%, 56% and 66% by treatment of Alum, PAC and PACS, respectively. Zeta potential was in the range of -6.1~-9.7 mV at optimum coagulants dosage for algae removal.

  • PDF

Effect of Anionic Polymer on Particle Size Distribution in PAC Coagulation Process for Phosphorus Removal (PAC를 이용한 인제거 공정에서 음이온계 고분자 첨가가 입도 분포에 미치는 영향)

  • Kim, Sunghong;Lee, Dongwoo;Kim, Donghan;Kim, Dooil
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.170-175
    • /
    • 2013
  • Achieving very low phosphorus levels in treated wastewater will require the installation of additional treatment. Phosphorus removal experiments by chemical coagulation were carried out for the effluent of wastewater treatment plant in this study. TP (total phosphorus) or phosphate were highly related to the addition of PAC (poly aluminium chloride) which is one of the inorganic coagulants. But, organic polymer did not significantly affect the phosphorus removal efficiency. Polymer affected the flocculation of particle especially particle matter less than 10 micrometer so, the number of micro particles was decreased by polymer dose. Chlorination would not affect on chemical coagulation process and TP and turbidity could be effectively removed by the co-addition of PAC and polymer.

Efficiency Prediction of the Particle Removal Efficiency of Multi Inner Stage(MIS) Cyclone by Computational Fluid Dynamics(CFD) Analysis and Experimental Verification (CFD 해석을 이용한 Multi Inner Stage Cyclone 내부의 미세입자제거 효율 예측 및 실험적 검증)

  • Kim, Hye-Min;Kwon, Sung-An;Lee, Sang-Jun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.07a
    • /
    • pp.243-246
    • /
    • 2012
  • A new multi inner stage(MIS) cyclone was designed to remove the acidic gas and minute particles of harmful materials produced from electronic industry. To characterize gas flow in MIS cyclone, pressure and velocity distribution were calculated by means of computational fluid dynamics(CFD) commercial program. Also, the flow locus of particles and particle removal efficiency were analyzed by Lagrangian method. When outlet pressure condition was -1,000 Pa, the efficiency was the best in this study. Based on the CFD simulation result, the pressure loss and destruction removal efficiency was measured through MIS cyclone experiment.

  • PDF

Numerical Simulation on Dispersion of Fume Micro-Particles by Particle Suction Flows in Laser Surface Machining (입자 석션유동에 따른 레이저 표면가공의 마이크로 흄 오염입자 산포 특성 해석연구)

  • Kyoungjin Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.1-6
    • /
    • 2023
  • In CO2 laser surface machining of plastic films in modern display manufacturing, scattering of fume particles could be a major source of well-recognized film surface contamination. This computational fluid dynamics research investigates the suction air flow patterns over a film surface as well as the dispersion of micron-sized fume particles with low-Reynolds number particle drag model. The numerical results show the recirculatory flow patterns near laser machining point on film surface and also over the surface of vertical suction slot, which may hinder the efficient removal of fume particles from film surface. The dispersion characteristics of fume particles with various particle size have been tested systematically under different levels of suction flow intensity. It is found that suction removal efficiency of fume particles heavily depends on the particle size in highly nonlinear manners and a higher degree of suction does not always results in more efficient particle removal.

  • PDF

Three-dimensional Electrochemical Oxidation process using Nanosized Zero-valent Iron/Activated carbon as Particle electrode and Persulfate (나노영가철/활성탄 입자전극과 과황산을 이용한 3차원 전기화학적 산화공정)

  • Min, Dongjun;Kim, Cheolyong;Ahn, Jun-Young;Cho, Soobin;Hwang, Inseong
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.6
    • /
    • pp.104-113
    • /
    • 2018
  • A three-dimensional electrochemical process using nanosized zero-valent iron (NZVI)/activated carbon (AC) particle electrode and persulfate (PS) was developed for oxidizing pollutants. X-ray diffraction (XRD), scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), and Brunauer-Emmett-Teller (BET) surface area analysis were performed to characterize particle electrode. XRD and SEM-EDS analysis confirmed that NZVI was impregnated on the surface of AC. Compared with the conventional two-dimensional electrochemical process, the three-dimensional particle electrode process achieved three times higher efficiency in phenol removal. The system with current density of $5mA/cm^2$ exhibited the highest phenol removal efficiency among the systems employing 1, 5, and $10mA/cm^2$. The removal efficiency of phenol increased as the Fe contents in the particle electrode increased. The particle electrode achieved more than 70% of phenol removal until it was reused for three times. The sulfate radical played a predominant role in phenol removal according to the radical scavenging test.

Gas and particle removal characteristics of a novel electrostatic precipitation type air cleaner using an activated carbon filter as an electrode (활성탄 섬유 필터를 전극으로 활용한 정전 방식의 공기정화장치의 가스 및 입자 제거 특성 분석)

  • Lim, Gi-Taek;Kim, Yong-Jin;Han, Bangwoo;Woo, Chang Gyu;Shin, Weon Gyu;Kim, Hak-Joon
    • Particle and aerosol research
    • /
    • v.14 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • We have developed an electrostatic precipitation (ESP) type air cleaner for indoor air quality and investigated its performances regarding CADR (Clean air delivery rate), single-pass efficiency and gas removal efficiency. The ESP air cleaner used an ACF (Activated carbon fiber) filter for gas removal and the ACF as a high voltage electrode for particle removal. The ESP air cleaner was tested in a chamber with the volume of $1m^3$ regarding CADR and gas removal efficiency. The applied CADR area of the ESP was $1.8m^2$. Gas removal efficiency was tested with 3 gases (Acetaldehyde, Acetic acid, Ammonia). As the results of the gas removal efficiency, the ESP air cleaner shows the removal efficiencies of 90, 98 and 85% for acetaldehyde, acetic acid and ammonia, respectively.