• Title/Summary/Keyword: particle injection

Search Result 445, Processing Time 0.022 seconds

Injection Formulation of Paclitaxel Employing Solid Lipid Nanoparticles (SLN) (고형지질나노입자를 이용한 파클리탁셀의 주사제 설계)

  • Choi, Sung-Up;Kim, Sun-Kyu;Lee, Jung-Min;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.4
    • /
    • pp.319-322
    • /
    • 2003
  • Many studies have been attempted to overcome the problems of paclitaxel related to the extremely low aqueous solubility of paclitaxel and the unexpected side-effects caused by $Cremophor^{\circledR}$ EL in a commercial paclitaxel formulation, $Taxol^{\circledR}$. In order to formulate a new delivery system suitable for intravenous administration without toxic excipients, in this study, paclitaxel was incorporated into solid lipid nanoparticles (Px-SLN) by hot homogenization technique using a microfluidizer. Particle size and zeta potential were measured by a Zetasizer. In vitro drug release experiment was performed by a dialysis diffusion method. Each Px-SLN or $Taxol^{\circledR}$ was intravenously administered to the male Sprague-Dawley rats at a dose of 5 mg/kg as paclitaxel. Blood samples were deproteinated with acetonitrile and assayed for paclitaxel by the validated HPLC/MS/MS method. Mean particle size and zeta potential were measured as 72.1 nm (< Polydispersity 0.3) and -41.5 mV, respectively. The content of paclitaxel in SLN was 1.42 mg/ml and the drug loading efficiency was $71.2{\pm}4.3%$. The $AUC_t$ of Px-SLN was 3.4-fold greater than that of $Taxol^{\circledR}$. The Px-SLN might be a promising candidate for an alternative formulation for the parenteral delivery of paclitaxel.

Preparation of Dexamethasone-21-palmitate Incorporated Lipid Nanosphere: Physical Properties by Varying Components and Ratio of Lipid (팔미틴산덱사메타손이 봉입된 지질나노입자의 제조: 지질종류와 함량에 따른 물리적 특성)

  • Jung, Suk-Hyun;Lee, Jung-Eun;Seong, Ha-Soo;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.6
    • /
    • pp.355-361
    • /
    • 2006
  • Intraarticular corticosteroid injections for therapy of rheumatic arthritis are administered with the aim of optimal local anti-inflammatory effect at the injection site. Since the side effects of corticosteroidal drug, dexamethasone(DEX), administered at hish dose limited the therapeutic efficacy, there was a need to design a new drug delivery system for controlled release of dexamethasone. As a prodrug for continuous therapeutic efficacy, dexamethasone-21-palmitate(DEX-PAL) was prepared via esterification of palmitoyl chloride and dexamethasone. DEX-PAL was identified by NMR and MASS analysis. DEX-PAL or DEX was entrapped in lipid nanosphere which could be prepared by using a self emulsification-solvent evaporation method. Physicochemical characteristics such as mean particle diameter, zeta potential and drug loading efficiency of the lipid nanospheres were investigated with variation of either the kind of lipid or the lipid composition. The lipid nanospheres had a mean diameter $83{\sim}95$ nm and DEX-PAL loading efficiency of up to 95%. The drug loading efficiency increased with the increase of aliphatic chain length attached to the phospholipid. The incorporation of cationic lipid was very efficient for both reducing particle size of lipid nanospheres and enhancing drug loading efficiency. The lipid nanospheres containing DEX-PAL may be a promising novel drug carrier for the controlled release of the poorly water-soluble drugs.

On-Road Investigation of PM Emissions of Passenger Vehicles Fuelled with Diesel and Gasoline Using Mobile Emission Laboratory (이동형 배출가스 측정시스템(MEL)을 이용한 디젤 및 가솔린 차량에서 배출되는 입자상 물질 평가)

  • Lee, Seok-Hwan;Kim, Hong-Suk;Park, Jun-Hyuk;Woo, Se-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.737-744
    • /
    • 2012
  • A mobile emission laboratory (MEL) was designed to measure the amount of traffic pollutants, with high temporal and spatial resolution under real conditions. Equipment for the gas-phase measurements of CO, NOx, $CO_2$, and THC and for the measurement of the number, concentration, and size distribution of fine and ultra-fine particles by an FMPS and CPC was placed in a minivan. The exhausts of different types of vehicles can be sampled by an MEL. This paper describes the technical details of the MEL and presents data from the experiment in which a car chases passenger vehicles fuelled by diesel and gasoline. The particle number concentration in the exhaust of the diesel vehicle was higher than that of the gasoline vehicle. However, the diesel vehicle with a DPF emitted fewer particles than the vehicle equipped with a gasoline direct injection engine, with particle diameters over 50 nm.

Removal of NOx and $SO_2$ from Combustion Flue Gases by Corona Discharge Systems (코로나 방전 시스템을 이용한 연소가스중의 NOx, $SO_2$제거)

  • 박재윤
    • Electrical & Electronic Materials
    • /
    • v.10 no.8
    • /
    • pp.830-835
    • /
    • 1997
  • In this study an experimental investigation has been conducted to remove NOx and SO$_2$simultaneously from a combustion flue gases were consisted of NO-SO$_2$-$CO_2$-$N_2$-O$_2$([NO]o:200ppm and [SO$_2$]o:800ppm) and the injection gases used as radical source gases were NH$_3$-Ar-air and CH$_4$-Ar-air. NOx and SO$_2$removal efficiency and the other by-products were measured by Fourier Transform Infrared(FTIR) as well as SO$_2$, NOx and NO$_2$gas detectors. and SEM images after sampling. The results showed that a significant Nucleating Particle Counter(CNPC) and SEM images after sampling. The results showed that a significant aerosol particle formation was observed during a simultaneous NOx and SO$_2$removal operation in corona radical shower systems. The diameter of aerosol particles was in the range of 0.18 to 3.6${\mu}{\textrm}{m}$ with a maximum fraction of particles at particles diameter of 1${\mu}{\textrm}{m}$. The NOx removal efficiency significantly increased with increasing applied voltage and NH$_3$molecule ratio. The SO$_2$removal efficiency was not significantly effected by applied voltage and slightly increased with increasing NH$_3$molecule ratio. It could be found that it is possible to use CH$_4$for NOx and SO$_2$removal by corona radical shower systems.

  • PDF

The $SO_2$ effect on NOx removal by Corona Shower System (코로나 샤워 시스템을 이용한 NOx제거에서 $SO_2$의 영향)

  • Park, Jae-Yoon;Kim, Ick-Kewn;Lee, Jae-Dong;Kim, Jong-Dal;Lee, Duck-Chool;Chang, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1794-1796
    • /
    • 1998
  • In this study, the $SO_2$ addition effect on NOx removal has been conducted from a combustion flue gases by the do corona discharge-activated radical shower systems. The simulated flue gases were consisted of NO-O_2-$N_2$, NO-$CO_2-N_2-O_2$ and $NO-SO_2-CO_2-Na-O_2$([NO]o:200ppm and $[SO_2]o$:800ppm). The injection gases used as radical source gases were $NH_3$-Ar-air. $SO_2$ and NOx removal efficiency and the other by-products were measured by Fourier Transform Infrared(FTIR) as well as $SO_2$. NOx and $NO_2$ gas detectors. By-product aerosol particles were also observed by Condensation Nucleation Particle Counter(CNPC) and SEM images after sampling. The results showed that asignificant aerosol Particle formation was observed during a removal operation in corona radical shower systems. The NOx removal efficiency significantly increased with increasing applied voltage and $NH_3$ molecule ratio. The $SO_2$ removal efficiency was not significantly effected by applied voltage and slightly increased with increasing $NH_3$ molecule ratio. The NOx removal efficiency for NO-$SO_2-CO_2-N_2-O_2$ was better than that for NO-$CO_2-N_2-O_2$.

  • PDF

Fabrication and Characterization of Cu-based Amorphous Coatings by Cold Spray Process (저온 분사를 이용한 Cu계 비정질 코팅층의 제조 및 특성 연구)

  • Jung, Dong-jin;Park, Dong-Yong;Lee, Jin Kyu;Kim, Hyung Jun;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.321-327
    • /
    • 2008
  • Cu based amorphous ($Cu_{54}Zr_{22}Ti_{18}Ni_6$) coating was produced by cold spraying as a new fabrication process. The microstructure and macroscopic properties of amorphous coating layer was investigated and compared with those of cold sprayed pure Cu coating. Amorphous powders were prepared by gas atomization and Al 6061 was used as the substrate plate. X-ray diffraction results showed that Cu based amorphous powder could be successfully deposited by cold spraying without any crystallization. The Cu based amorphous coating layer ($300{\sim}400{\mu}m$ thickness) contained 4.87% porosity. The hardness of Cu based amorphous coating represented $412.8H_v$, which was correspond to 68% of the hardness of injection casted bulk amorphous material. The wear resistance of Cu based amorphous coating was found to be three times higher than that of pure Cu coating. The 3-point bending test results showed that the adhesion strength of Cu based amorphous coating layer was higher than that pure Cu coating. It was also observed that hard Cu base amorphous particle could easily deform soft substrate by particle collisions and thus generated strong adhesion between coating and substrate. However, the amorphous coating layer unexpectedly represented lower corrosion resistance than pure Cu coating, which might be resulted from the higher content of porosity in the cold sprayed amorphous coating.

Characteristics of High-viscosity Grouting Materials for Rock Joint Reinforcement of Deep Tunnel (대심도 터널 암반 절리 보강을 위한 고점도 그라우팅 재료의 특성)

  • Yoon, Inkook;Moon, Junho;Lee, Junsu;Kim, Younguk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.59-63
    • /
    • 2021
  • This study presented the characteristics and additive effects of the grout with mixing ratio for developing of high-efficiency grouting technology under high depth conditions. The laboratory investigation were conducted with Portland cement (OPC) and micro cement (S8000-E) including viscosity experiments, particle size analysis experiments, Gel-Time experiments and uniaxial compressive strength experiments. As a result of the viscosity experiment, it was shown that OPC is advantageous in terms of viscosity, but S8000-E is suitable when considering the passage of rock joint intervals through particle size analysis. The Gel-Time experiment shows that it is not that difficult with injection as a grout material even when silica fume (SF) was applied. The strength of the cured material is improved as increase in the content of silica fium (SF). Within the range of the study, the optimal mixing ratio obtained through various experiments is S8000-E, w/c=70%, silica fium (SF)=6%, and 7 days.

Some Statistical Characteristics of Substorms Under Northward IMF Conditions (북쪽방향 IMF 조건하에서 발생하는 서브스톰의 통계적 특성)

  • Lee, Ji-Hee;Lee, D.Y.;Choi, K.C.;Jeong, Y.
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.451-466
    • /
    • 2009
  • While substorms are known to generally occur under southward IMF conditions, they can sometimes occur even under northward IMF conditions. In this paper, we studied the substorms that occurred in May, 2000 to 2002 to examine some statistical characteristics of the IMF and solar wind associated with northward IMF substorms. We focused on the cases where two or more substorms occurred successively under northward IMF conditions. Also, by checking Sym-H index associated with each of the substorms we determined whether or not there is any association of such northward IMF substorm occurrence with storm times. We also examined statistical properties at geosynchronous altitude in terms of magnetic field dipolarization and energetic particle injection. The following results were obtained. (i) Most of the northward IMF substorms occurred under average solar wind conditions. The majority of them occurred within 2 hrs duration of northward IMF Bz state, but there are also a nonnegligible number of substorms that occurred after a longer duraiton of northward IMF Bz state. (ii) While most of the substorms occurred as isolated from a magnetic storm time, those that occurred in a magnetic storm time show a higher average value of IMF and solar wind than that for the isolated substorms. (iii) About 55% of the substorms were associated with the IMF clock angle that can possibly allow dayside reconnection, and the other 45% were associated with more or less pure northward IMF conditions. Therefore, for the latter cases, the energy input from the solar wind into the magnetosphere should be made by other way than the dayside reconnection. (iv) For most of the substorms, the magnetic field dipolarizations and energetic particle injections at geosynchronous altitude were identified to be generally weak. But, several events indicated strong magnetic field dipolarizations and energetic particle injections.

Effect of H2O2 Injection and Temperature Changing on the Organic Carbon Fraction in Chromatogram Dissolved Organic Carbon (CDOC) from Thermal Pretreatment (H2O2 주입과 온도변화가 열적 전처리 후 발생 슬러리의 CDOC 유기탄소분율에 미치는 영향평가)

  • Kim, Hee-Joong;Kim, Tae-Kyoung;Kim, Youn-Kwon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.3
    • /
    • pp.110-116
    • /
    • 2016
  • Biogas yields point of view, the possibility of reusing excess sludge treated by thermal pretreatment for the purpose of improving the efficiency of the anaerobic digestion process has been investigated in recent year. Thermal pretreatment technology was considered as a pretreatment technique to improve excess sludge properties because of the solubilization of particulate organics. As a view point of sludge reduction and recycle, however, many researchers focused on the ability of particulate hydrolysis and COD solubilization under a high temperature, and few reports have addressed on the physical/chemical characteristics changing. This research was performed to evaluate the effects of a various temperature and chemical additives on carbon formation and fractionation in treated slurry from thermal pretreatment. Based on the results, it was revealed that oxidants injection and temperature changing have significantly caused the change of carbon fractions in slurry from thermal pretreament. Especially, it was considered that the efficiencies of particle hydrolysis increased with the increase of the reaction temperature. Low molecular weight(Mw < 350 g/mol) organic carbon formation increased with the increase of oxidants injection. It was expected that results of this research will provide an overview of the characteristics of thermal pretreatement for excess sludge reduction and recycle.

Variation of abrasive feed rate with abrasive injection waterjet system process parameters (연마재 투입형 워터젯 시스템의 공정 변수에 따른 연마재 투입량 변화)

  • Joo, Gun-Wook;Oh, Tae-Min;Kim, Hak-Sung;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.141-151
    • /
    • 2015
  • A new rock excavation method using an abrasive injection waterjet system has been developed to enhance the efficiency and reduce the vibration of tunnel excavation. The abrasive feed rate is an important factor for the cutting performance and the economical efficiency of waterjet-based excavation. In this study, various experiments were performed to explore the effects of major process parameters for both the abrasive feed rate and the suction pressure occurring inside the mixing chamber when the abrasives are inhaled. Experimental results reveal that the abrasive feed rate is affected by geometry parameters (abrasive pipe height, length, and tortuosity), abrasive parameters (abrasive particle size), and jet energy parameters (water pressure and water flow rate). In addition, the relation between the cutting performance and the abrasive feed rate was discussed on the basis of the results of an experimental study. The cutting performance can be maximized when the abrasive feed rate is controlled appropriately via careful management of major process parameters.