• Title/Summary/Keyword: particle energy

Search Result 2,326, Processing Time 0.03 seconds

Nano particle size control of Pt/C catalysts manufactured by the polyol process for fuel cell application (폴리올법으로 제조된 Pt/C 촉매의 연료전지 적용을 위한 나노 입자 크기제어)

  • Joon Heo;Hyukjun Youn;Ji-Hun Choi;Chae Lin Moon;Soon-Mok Choi
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.437-442
    • /
    • 2023
  • This research aims to enhance the efficiency of Pt/C catalysts due to the limited availability and high cost of platinum in contemporary fuel cell catalysts. Nano-sized platinum particles were distributed onto a carbon-based support via the polyol process, utilizing the metal precursor H2PtCl6·6H2O. Key parameters such as pH, temperature, and RPM were carefully regulated. The findings revealed variations in the particle size, distribution, and dispersion of nano-sized Pt particles, influenced by temperature and pH. Following sodium hydroxide treatment, heat treatment procedures were systematically executed at diverse temperatures, specifically 120, 140, and 160 ℃. Notably, the thermal treatment at 140 ℃ facilitated the production of Pt/C catalysts characterized by the smallest platinum particle size, measuring at 1.49 nm. Comparative evaluations between the commercially available Pt/C catalysts and those synthesized in this study were meticulously conducted through cyclic voltammetry, X-ray diffraction (XRD), and field-emission scanning electron microscopy-energy dispersive X-ray spectroscopy (FE-SEM EDS) methodologies. The catalyst synthesized at 160 ℃ demonstrated superior electrochemical performance; however, it is imperative to underscore the necessity for further optimization studies to refine its efficacy.

Analysis of performance test results of CA-certified air cleaners from 2003 to 2015 (2003년부터 2015년까지 CA 인증 공기청정기의 성능 시험 결과 분석)

  • Kim, Hak-Joon;Hong, Kee-Jung;Woo, Chang Gyu;Han, Bangwoo;Kim, Yong-Jin
    • Particle and aerosol research
    • /
    • v.13 no.1
    • /
    • pp.17-23
    • /
    • 2017
  • In this study, the test results obtained from the performance tests for CA (Korea Association of Cleaning Air) certificated air cleaners which had been commercially available in Korea from 2003 to 2015 were analyzed. Among the test parameters such as flow rate, particle collection efficiency, clean air delivery rate (CADR), ozone emission, odor removal efficiency and noise level, noise level and CADR were correlated with flow rates. Collection and odor removal efficiencies were 20% higher than the limit of the CA certification. The ozone emissions from the air cleaners were negligible because all the air cleaners were equipped with only HEPA filters, not electrostatic precipitation method which produces ozone.

Prolong life-span of WSN using clustering method via swarm intelligence and dynamical threshold control scheme

  • Bao, Kaiyang;Ma, Xiaoyuan;Wei, Jianming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2504-2526
    • /
    • 2016
  • Wireless sensors are always deployed in brutal environments, but as we know, the nodes are powered only by non-replaceable batteries with limited energy. Sending, receiving and transporting information require the supply of energy. The essential problem of wireless sensor network (WSN) is to save energy consumption and prolong network lifetime. This paper presents a new communication protocol for WSN called Dynamical Threshold Control Algorithm with three-parameter Particle Swarm Optimization and Ant Colony Optimization based on residual energy (DPA). We first use the state of WSN to partition the region adaptively. Moreover, a three-parameter of particle swarm optimization (PSO) algorithm is proposed and a new fitness function is obtained. The optimal path among the CHs and Base Station (BS) is obtained by the ant colony optimization (ACO) algorithm based on residual energy. Dynamical threshold control algorithm (DTCA) is introduced when we re-select the CHs. Compared to the results obtained by using APSO, ANT and I-LEACH protocols, our DPA protocol tremendously prolongs the lifecycle of network. We observe 48.3%, 43.0%, and 24.9% more percentages of rounds respectively performed by DPA over APSO, ANT and I-LEACH.

The Optimal Operation for Community Energy System Using a Low-Carbon Paradigm with Phase-Type Particle Swarm Optimization

  • Kim, Sung-Yul;Bae, In-Su;Kim, Jin-O
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.530-537
    • /
    • 2010
  • By development of renewable energy and more efficient facilities in an increasingly deregulated electricity market, the operation cost of distributed generation (DG) is becoming more competitive. International environmental regulations of the leaking carbon become effective to reinforce global efforts for a low-carbon paradigm. Through increased DG, operators of DG are able to supply electric power to customers who are connected directly to DG as well as loads that are connected to entire network. In this situation, a community energy system (CES) with DGs is a new participant in the energy market. DG's purchase price from the market is different from the DG's sales price to the market due to transmission service charges and other costs. Therefore, CES who owns DGs has to control the produced electric power per hourly period in order to maximize profit. Considering the international environment regulations, CE will be an important element to decide the marginal cost of generators as well as the classified fuel unit cost and unit's efficiency. This paper introduces the optimal operation of CES's DG connected to the distribution network considering CE. The purpose of optimization is to maximize the profit of CES. A Particle Swarm Optimization (PSO) will be used to solve this complicated problem. The optimal operation of DG represented in this paper would guide CES and system operators in determining the decision making criteria.

Techno-Economic Optimization of a Grid-Connected Hybrid Energy System Considering Voltage Fluctuation

  • Saib, Samia;Gherbi, Ahmed;Kaabeche, Abdelhamid;Bayindir, Ramazan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.659-668
    • /
    • 2018
  • This paper proposes an optimization approach of a grid-connected photovoltaic and wind hybrid energy system including energy storage considering voltage fluctuation in the electricity grid. A techno-economic analysis is carried out in order to minimize the size of hybrid system by considering the benefit-cost. Lithium-ion battery type is used for both managing the electricity selling to the grid and reducing voltage fluctuation. A new technique is developed to limit the voltage perturbation caused by the solar irradiance and the wind speed through determining the state-of-charge of battery for every hour of a day. Improved particle swarm optimization (PSO) methods, referred to as FC-VACPSO which combines Fast Convergence Particle Swarm Optimization (FCPSO) method and Variable Acceleration Coefficient Based Particle Swarm Optimization (VACPSO) method are used to solve the optimization problem. A comparative study has been performed between standard PSO method and PSO based methods to extract the best size with the benefit cost. A sensitivity analysis has been studied for different kinds and costs of batteries, by considering variable and constant state-ofcharge of battery. The simulations, performed under Matlab environment, yield good results using the FC-VACPSO method regarding the convergence and the benefit cost of the hybrid system.

Damage Behaviors by Particle Impact Energy of $Al_2O_3-TiO_2$ Coated Glass Specimen ($Al_2O_3-TiO_2$ 용사코팅된 유리의 입자충격 에너지에 따른 손상거동)

  • Lee, Moon-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.107-114
    • /
    • 2012
  • Fracture of brittle material due to dynamic load such a particle impact has been reported by many researchers as the fracture behavior by variation of stress for a short minute. Especially, the brittle material, such a ceramic, applied to the structural component of machine, is considered as the important project. In order to evaluate the improvement of impact resistance, the particle impact test for the $Al_2O_3-TiO_2$ coated glass is practiced. And then, the damage variation according to the impact energy of steel ball was evaluated. There was a large improvement by the ceramic coating on the surface of a glass substrate. The damage volume was especially imported to evaluate damage behavior in quantity. These data were plotted on logarithmic coordinate and experimental equations were induced by data analysis based on test results. And the variation of critical energy for crack initiation was analyzed with critical impact energy when each crack occurs.

Evaluation of Removal Efficiency of Water Contents using Inertial Impaction Separator (관성 충돌 방식의 액적 분리장치의 수분제거효율 평가)

  • Lee, Sin Young;Hong, Won Seok;Shin, Wanho;Kim, Gyujin;Song, Dong Keun
    • Particle and aerosol research
    • /
    • v.9 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • Inertial impaction type mist eliminators are the most effective instruments to separate mist from the gas. In this work, the effect of the horizontal chevron type mist eliminators is characterized experimentally. Droplet size distribution and evaluation of removal efficiency of the chevron type mist eliminators at different gas flows were investigated using an aerosol particle size analyzer and a portable aerosol spectrometer, respectively. The experimental investigations showed that the mist removal efficiency in these instruments is dependent in the droplet size, and the pressure drop is nil.

Particle image velocimetry measurement of complex flow structures in the diffuser and spherical casing of a reactor coolant pump

  • Zhang, Yongchao;Yang, Minguan;Ni, Dan;Zhang, Ning;Gao, Bo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.368-378
    • /
    • 2018
  • Understanding of turbulent flow in the reactor coolant pump (RCP) is a premise of the optimal design of the RCP. Flow structures in the RCP, in view of the specially devised spherical casing, are more complicated than those associated with conventional pumps. Hitherto, knowledge of the flow characteristics of the RCP has been far from sufficient. Research into the nonintrusive measurement of the internal flow of the RCP has rarely been reported. In the present study, flow measurement using particle image velocimetry is implemented to reveal flow features of the RCP model. Velocity and vorticity distributions in the diffuser and spherical casing are obtained. The results illuminate the complexity of the flows in the RCP. Near the lower end of the discharge nozzle, three-dimensional swirling flows and flow separation are evident. In the diffuser, the imparity of the velocity profile with respect to different axial cross sections is verified, and the velocity increases gradually from the shroud to the hub. In the casing, velocity distribution is nonuniform over the circumferential direction. Vortices shed consistently from the diffuser blade trailing edge. The experimental results lend sound support for the optimal design of the RCP and provide validation of relevant numerical algorithms.

Evaluation of the clean air delivery rate performance of a ceiling air circulator with filters (필터 적용 천정형 공기순환기의 공기청정화능력 평가)

  • Joe, Yun-Haeng;Shin, Dongho;Park, Hyun-Seol;Heo, Jieun;Shim, Joonmok
    • Particle and aerosol research
    • /
    • v.17 no.2
    • /
    • pp.29-36
    • /
    • 2021
  • In this study, the clean air delivery rate (CADR) of ceiling air circulator (CAA) was determined under indoor environmental simulation conditions. An air filter was used to provide air cleaning ability to the CAA. The CADR of filter adapted CAA was evaluated and compared with the value of commercial air purifier. The installation of mesh-shaped filter on the CAA showed particle reduction effect on the particles over 0.4 ㎛ in diameter, but the CADR was up to 0.25 m3/min. When the filter having 99.9% in collection efficiency was installed on the CAA, its CADR was 1.52 m3/min, while the CADR of commercial air purifier was 3.19 m3/min.

INDUCTION PLASMA DEPOSITION TECHNOLOGY FOR NUCLEAR FUEL FABRICATION

  • I. H. Jung;K. K. Bae;Lee, J. W.;Kim, T. K.;M. S. Yang
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.216-221
    • /
    • 1998
  • A study on induction plasma deposition with ceramic materials, yttria-stabilized-zirconia ZrO$_2$-Y$_2$O$_3$ (m.p 264O $^{\circ}C$), was conducted with a view developing a new method for nuclear fuel fabrication Before making dense pellets more than 96%TD., the spraying condition was optimized through the process parameters, such as chamber pressure, plasma plate power powder spraying distance, sheath gas composition, probe position, particle size and powders different morphology. The results with a 5mm thick deposit on rectangular planar graphite substrates showed a 97.11% theoretical density when the sheath gas flow rate was Ar/H$_2$120/20 l/min, probe position 8cm, particle size -75 ${\mu}{\textrm}{m}$ and spraying distance 22cm by AMDRY146 powder. The degree of influence of the main effects on density were powder morphology. particle size, sheath gas composition, plate power and spraying distance, in that order. Among the two parameter interactions, the sheath gas composition and chamber pressure affects density greatly. By using the multi-pellets mold wheel type, the pellet density did not exceed 94%T.D., owing to the spraying angle.

  • PDF